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GENERAL THEORY OF WALL INTERFERENCE
FOR STATIC STABILITY TESTS IN CLOSED RECTANGULAR
TEST SECTIONS AND IN GROUND EFFECT

By Harry H. Heyson
Langley Research Center

SUMMARY

A theory is developed which predicts the interference velocities and interference
velocity gradients caused by the walls of the tunnel. Large wake deflections are allowed
in both the lateral and vertical directions. The theory includes V/STOL and conventional
wall-interference theories and ground effect as special cases. Symmetry and interchange
relationships between the interference factors are developed, and extensive numerical
results are presented.

Use of the interference factors to correct data depends upon the availability of
detailed aerodynamic treatment in nonuniform flow of the model under test. In most
tests the available aerodynamic treatments will be found either inadequate or too time
consuming for rigorous routine correction of data relating to lateral-directional stability.

INTRODUCTION

Reference 1 presents a review (published in 1966) of the status of subsonic wall-
interference theory. In addition, reference 2 presents a similar review of wall-
interference theory as it pertains to models with highly deflected wakes. In general,
these reviews find that existing theory is reasonably adequate when used to determine
the effect of the walls upon the overall performance of the model. Corrections to longi-
tudinal stability measurements, obtained by calculating the interference at the tail of the
model and by examining the gradients of interference over the wing chord, are somewhat
less satisfactorily verified. However, provided that the model is reasonably small,
generally satisfactory results can be obtained for longitudinal stability tests as well, pro-
vided that considerable care is exercised not only in the wall-interference calculations
but also in correcting for nonuniformities in the distribution of flow angularities within
the basic wind-tunnel flow.

Theoretical treatment of wall interference as applied to lateral-directional stability
testing is essentially nonexistent. In a few cases, the asymmetries generated by yawing



a finite wing have been noted by reference 1 to be significant; however, the effect of the
side forces generated by the asymmetric model are not considered in the available
treatments.

A complete wall-interference theory including lateral-directional stability tests
must consider a number of features. First, since the model is asymmetrically disposed in
the tunnel, side forces will be present. These side forces will be influenced by the walls
and will result in interference velocities just as do the lift and drag forces. Secondly,
since lateral-directional testing primarily constitutes a study of the moments rather than
the forces on the model, and since it is primarily the gradients of the interference veloci-
ties which affect moments, it is necessary to examine all of the possible interference gra-
dients in the tunnel. Observe that the mutual consideration of the above two features is a
major complication, since, in order to consider all of the possible wall influences, it
becomes necessary to examine the interference velocities in the orthogonal directions as
caused individually by forces in these three directions for a total of nine interference
velocities, as well as the gradients of these nine interference velocities along each of the
three coordinates for a total of 27 interference velocity gradients. Finally, since modern
aircraft developments have resulted in the need to test many types capable of extraordi-
narily large wake deflections, it is desirable to examine the effect of these wake deflec-
tions, both vertically and laterally, on the resultant interference factors. That such
effects may be large has already been demonstrated by the more limited ahalyses pre-
sented in references 3 to 8.

The present paper presents an analysis which considers all of the foregoing features.
In the basic theoretical treatment, the model is assumed to be vanishingly small and
located at an arbitrary point within the tunnel test section, and the interference velocities
and their gradients are obtained at an equally arbitrary point within the test section. The
wake, which actually follows a curved path from the model to infinity downstream in the
tunnel, is linearized to consist of a series of straight-line segments which follow approxi-
mately the same path. Except for modifications to allow for side forces and for a lateral
wake deflection, this wake is essentially the same as that used in references 5 and 6.

The assumption that the model is vanishingly small is less restrictive than appears
on the surface. Linear superposition of the results may be used to obtain the appropriate
interferences for models of arbitrary size or configuration just as in references 6 and 7.
A few sample calculations of this nature are included in the present paper.

In the application of the present theory it is necessary to estimate the wake deflec-
tion angles with respect to the tunnel axes. The momentum analysis presented originally
in reference 9 is not adequate in the present case because that paper did not consider the
possibility of side forces with respect to the coordinate system. The necessary modifica-
tions to the theory of reference 9 are derived herein. Furthermore, references 10 and 11
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have already noted that it is necessary to modify the wake angles as computed by momen-
tum theory in order to account for wake rollup. A few remarks on useful approximations
to the rolled up wake deflection angles are also included.

As presented herein, the theory pertains specifically only to completely closed rec-
tangular wind tunnels. Formal extension to completely open or to closed-on-bottom-only
test sections, as in reference 5, is simple. However, it should be observed that the deri-
vation of the usual boundary condition imposed at an open boundary depends upon the use
of small perturbation assumptions (ref. 12). If the wake actually impinges upon an open
boundary, these assumptions may be severely violated (refs. 3 and 5). Under such condi-
tions the theoretically obtained interference velocities may be grossly in error. It is
recommended that such extension should only be attempted with great caution both in the
theoretical treatment and in the application of the results to the correction of wind-tunnel
data.

Similar concern must be observed when attempting to correct data from closed test
sections if the wake deflections are sufficiently great. It was first shown experimentally
(refs. 13 and 14) and later theoretically (refs. 8 and 11) that sufficiently large wake deflec-
tions can result in such enormous alterations of the flow within the test section that the
measured data no longer represent any free-air flight condition (although under certain
circumstances they may approximate flight in ground effect (ref. 8)). Reasonably satis-
factory correlations of the conditions under which these effects limit testing (ref. 2) have
been obtained for tests which involve essentially no lateral wake deflection. The equiv-
alent limiting conditions for wakes with large horizontal as well as vertical deflections
are completely unexplored.

The effect of wall interference on the measured data will differ for different models
according to the sensitivity of the model characteristics to particular interference veloci-
ties or velocity gradients. The corrections to data -an be no better than the investigator's
ability to calculate the effect of these velocities and velocity gradients on the model char-
acteristics. For some classes of models, particularly many V/STOL types, there is an
inadequate theoretical background with which to calculate corrections. For other types
of models, theoretical means for these calculations may exist but be too lengthy for prac-
tical application to large masses of data. An exploration of actual correction formulas
would involve almost all known aerodynamics and is obviously beyond the scope of any one
paper or any one author. No such complete treatment is intended herein. Instead, a few
remarks on the treatment of wall effects as a problem in similitude are included in the
hope that this discussion will point out sources of information presently available for
approximate data corrections.



SYMBOLS

In order to arrive at a set of consistent axes and signs in the present analysis, it
has been necessary to define certain quantities in a manner in conflict with many stability
analyses. The reader is cautioned to consider carefully the definitions, particularly of
positive directions, and provide for suitable conversion to his desired standard.

z

A= h[ROCHV - <C %) sin xy sin Xy + <§ %) sin Xy €OS X + (C H) sin Xy cos XVZ}

A= hI:ROCHV - <§ %) sin Xg sin Xy - <C %) sin Xy COS Xp + <C %) sin Xy cos x.\J

AG reference area in ground effect, 4h2

Am momentum area of lifting system

AT wind-tunnel cross-sectional area, 4BH

aj functions relating length along the wake to the generalized coordinates x;
(see egs. (22) to (25))

B semiwidth of wind tunnel

b lateral distance from origin of doublet wake to right-hand (viewed from
behind) sidewall of wind tunnel

C drag coefficient D

D ’gS

CHV = ‘/1 - coszxH cossz

o lift coefficient, ?11’5'
CZ rolling-moment coefficient, positive when moment tends to roll aircraft
to left Rolling moment
$ qSE
Cm pitching-moment poefficient, positive when moment tends to pitch aircraft
nose up, Pltchmg_moment
qSc
Ca yawing-moment coefficient, positive when moment tends to yaw aircraft

Yawing moment
qS¢

nose left,



m,n,p,q,r

mj

resultant-force coefficient,

Gl

lateral-force coefficient, positive along Y-axis, qXS

Momentum

jet-momentum coefficient, aS

mean aerodynamic chord, or equivalent dimension for nondimensionalizing
moments

Cos Xy

COS Xy

drag, force directed along X-axis

induced drag, induced force directed along X-axis
semiheight of wind tunnel

height of model above floor of wind tunnel (or ground)
lift

distance from origin along wake

integers

doublet strength for doublets with axes directed along the i-axis
ratio of final to initial induced velocities in wake
dynamic pressure, —;—sz

dynamic pressure at tail

resultant force

- 5 >
nondimensional radius to origin, / (Z %)2 + <§ %) + @ %)



Ug,VosWo

Wh

X,Y,Z

wing area, or equivalent area for nondimensionalizing forces
and moments

wing semispan

sin XH

sin Xy

induced velocities along the X-, Y-, and Z-axes, respectively

mean, or momentum theory, values of induced velocities at the
lifting system

forward velocity
resultant velocity

reference velocity, vertical induced velocity which lifting system

would have if it could hover with momentum area Ay,, wh = - L

npAm

Cartesian coordinates, X-axis positive rearward, Y-axis positive to right
when viewed from behind, Z-axis positive upward. Unless otherwise
noted, the origin is centered in the lifting system of the model.

location of a point with respect to the X-, Y-, and Z-axes, respectively

location of a point on the wake with respect to the X-, Y-, and Z-axes,
respectively

generalized coordinates where i, j, and k may independently take on the
values x,y,z (Note, for example, that xy = x, Xy =Y, and xy = z.)

lateral force
angle of attack, positive nose upward

sideslip angle



v ratio of wind-tunnel width to wind-tunnel height, g
] interference factor (in general terms)

0i j interference factor for finding the interference velocity in the j-direction

A
caused by forces in the i-direction, defined by A¢i,j = Gi i A? 121

6i i,k interference factor for finding the rate of change per semiheight in the

k-direction of the interference velocity in the j-direction caused by

- }Am .
forces in the i-direction, defined by A(’Oi,j k- ﬁi,j X “A—T' Vi

€ ratio of wind-tunnel semiheight to height of model lifting system above
the floor of the wind tunnel

] ratio of distance between origin of wake and right-hand (as viewed from behind)
sidewall of the wind tunnel to the semiwidth of the wind tunnel, %

6 rate of pitch, positive nose upward, rad/sec

A wing sweep angle, measured positive rearward from lateral axis of
aircraft, deg
: . ; V cos «

i helicopter tip-speed ratio, fip speed

Vi generalized mean induced velocities at lifting system, uy when i =x,
Vo when i=y, wo when i=z

p mass density of air or other test medium in the wind tunnel

g ratio of wingspan to tunnel width, %

‘I’i,j function related to induced velocity in the j-direction caused by forces
in the i-direction

q)i,j,k function related to the rate of change in the k-direction of the induced

velocity in the j~direction caused by forces in the i-direction

® @, i for a mirror-image wake
2



14
i,k $; jk for a mirror-image wake

©i potential of wake as produced by forces in the i-direction

?j induced velocity in the j-direction as caused by forces in the i-direction

Piik rate of change in the k-direction of the induced velocity in the j-direction
b B

as caused by forces in the i-direction

horizontal wake skew angle, angle measured positive rearward from the

i negative Y-axis to the projection of the wake on the X-Y plane

Xy vertical wake skew angle, angle measured positive rearward from the
negative Z-axis to the projection of the wake on the X-Y plane

v yaw angle, measured positive nose right when viewed from behind

Prefix:

A change in value caused by boundary interference

Subscripts:

c value corrected for boundary interference

M value from momentum theory

i,j,ork indices which may independently take on the value x, y, or 2z, denoting the
major axis parallel to which a dimension, force, velocity, or velocity
gradient is to measured.

THEORY

Momentum Considerations

Certain quantities, upon which the interferences will be found to depend, may be
found from momentum considerations. The present analysis parallels that of reference 9.

Consider a force-producing system, acting upon the fluid flowing through an area
Am and producing lift, induced drag, and Y-force components, as sketched in figure 1.



Since force is equal to the time rate of change of momentum
L= pAmVR(-nwo)
Dj = pAmVR(-nuo)
Y= pAva(-nvo)

where

Vg = W uo)z + Vo2 + W2

Dividing equations (2) and (3) by equation (1) yields

Di_Y%
L Wo
Y _Yo
L 0

Expanding equation (4) and substituting equations (5) and (6) into it yields

/ 2 2
Dy D; :
Vg = V2+2VT}W0+<_L£) w02+<%) W02+W02

/ 2
D: D
=,/V2 + 2V T} Wq + K—L—‘L) + <%)2 + l]woz

Dividing both sides by -wg

v ff a2 [ - ¢

From equation (1)

W = —
0 npAy,Vp
W 2 _ -Lwg _ L
)
Am V v
npAm VR npAm(_wlz>

(1)
(2)
(3

(4)

(5)

(6)

(7

(8)

(9)



Now define wp as the induced velocity w, when V=0, Dj=0,and Y = 0; thatis,
wy, is the value of wg in a purely hovering condition. From equation (1)

- }_L
Wp = nPAm (10)

Divide equation (9) by the square of equation (10) to yield

L
VR)
2 npAyl—
o) 2P m<“”0 - Yo (11)
Wh L VR
npApn,
or
4
W
-t
Wh 2 D:\ 2
1+ X + l+—1
L W L

which is best solved for wg/wh on digital computing machinery. The desired root is
generally the smallest positive real root.

The vertical skew angle (XV)M’ from figure 1, is seen to be

_Viu, v Dy v Dj
tan (xy); = o -'vv;'r-’(w—cﬁ‘f) (13)
o tan-1 (V. Di
(XV)M_ tan (Wo+ L) (14)

where V/Wo may be obtained from Wo/Wh by means of the identity

Vv V/ Wh

wo Wo/Wh (15)

The horizontal skew angle (XH)M is similarly seen from figure 1 to be

10



Viuy VvV u_ WofV U\  Wo Wo_ Wo L 16
a0 gty =G T Vg Ve VoWetWe)~ ¥ T g
%o i
v_,Di
e etan-1{¥o_ L
(ay =B Ty (17)
L

or substituting equation (13) into equation (16)

tan (XV>M

tan (XH>M = ——Y]—ﬁ—— (18)

Observe from figure 1 that the wake passes downstream with no deflection whatever
(as in classical theory) if Xg and Xy are both 900, Note that the hovering case, where
the wake must pass directly downward, is given by Xy = 0° and Xg = 90°,

Effective Skew Angles

Reference 10 observes that the inclinations of the mass flow and of the vorticity in
the wake differ because of wake rollup. From experimental observations of the wake of a
rotor (ref. 15), it was concluded that the wake vorticity would be deflected downward by
approximately one-~half the deflection indicated by equations (17) and (18). Under this
assumption, the effective wake skew angles would be given by

X + 900

Xy = (—V)ME———— (19)
Xg )y * 90°

Xy = S—)Mz—— (20)

Equations (19) and (20) suffer from the obvious deficiency that the wake does not
assume the proper skew angles in hovering. Reference 11 presents an alternate view-
point which is more aesthetically pleasing in this regard. However, the practical limita-
tions on very low speed testing (refs. 2, 8, 10, 11, 12, and 14) effectively limit tests to
wake angles above which there would be any significant differences between equations (19)
and (20) and the alternate form given in reference 11. The wake angles used in the fol-
lowing analysis are completely arbitrary and should be interpreted as being the effective
wake angles, however obtained.

11



Wake in Free Air

The wake is assumed to be a straight line starting at the model and extending to
infinity. It is skewed rearward from the vertical axis by an angle Xy and skewed rear-
ward from the horizontal axis by an angle Xy (fig. 2). The wake is considered to con-
sist of a string of point doublets whose axes make some constant arbitrary angles with
the X-, Y-, and Z-axes.

Since, in the present linearized theory, the effect of the walls on the wake shape
is neglected, it is permissible to choose doublets whose axes are parallel to the nega-
tive X-, Y-, and Z-axes only. Any arbitrary doublet inclination can then be obtained
as a linear superposition of the above three cases.

The potential of a single doublet (fig. 2) of the infinite string comprising the wake

caused by forces in the Xj-direction has its axis directed parallel to the negative
Xj-axis. Thus, with respect to Cartesian coordinates centered in the point doublet, the

potential is

iXi (21)

Tk

i

doi =

The coordinates of the wake may be expressed as a set of parametric equations
in [, the length along the wake, as

. sin ¥,y sin x
X = 'H*‘— V Z (22)

I/1 - coszxﬁ cossz

~-sin Xy €0S Xy

y = l (23)
V1 - cossz coszxV

. -sin y;; €COS Y

7 = H vV (24)

\/i - COSZXH COSZXV
More generally, equations (22) to (24) may be rewritten as

where the aj are defined implicitly by equations (22) to (24). It will be convenient in the

12




following derivation to note that Z (aiz) =1 since along the wake 12=x2 4 y2 + 22,

1
Now if the coordinate system of the entire wake is chosen to coincide with the origin of
the wake, the wake potentials may be obtained by an integration over the entire length of

the wake; that is
dm;j gw (xi - ail)dl dmj gw (xi - ail)dl (26)

;= - = -
1 o 0 z X; ~ ail)z:l e " 0 ljZ(xiz) -2 Z(aixi) + lz}s/z
i i i

where the summations are considered to be carried out over the three values of i.

Equation (26) may be integrated immediately by the use of items 162 and 170 of
reference 16 to yield

xiE - Z (aixi)jl ray [-z Z (aixi) + Z (Xizil )

i i

e [Z o]y 69 -2 Tl

27

1

0

After substituting limits and performing some algebraic simplification, equa-

tion (27) becomes

.- / .2
dmi M al 'IZ(X1> (28)

2 ) - ) ), )

i i i

Equation (28) can be written in still more general form as

dmj 3x;
1 -1 (29a)

where

A= J(xz + y2 + 22) (1 ;;Om

- X sin xy sin xy +y sin xy €0S xyg + 2 sin xy €08 Xy (29b)

13



When the wake is not deflected sidewards (that is, when xp = 90° in fig. 2), equa-
tion (29) reduces identically to equation (7) of reference 5 for x; = x, and to equation (1)
of reference 5 for xj = z. Thus, the theory presented in reference 5 will appear as a sub-

set of the theory developed herein.
The induced velocity in the j-direction is then the partial derivative of equation (29)

with re_spect to xj, or

mhy (o))
R s s I VA (30)
ox; ‘L1 AL | A A2

Similarly, the rate of change in the k-direction of the induced velocity in the
j-direction is given by the partial derivative of equation (30) with respect to xy, or

agp. .
i,
T, Ciik
k 35
a3A aA( 82A \ oA [ 02A \ oA [ #%A 9A \[2A\(2A
_ d_rn:-L axi aX]' Xy ax; an 3Xk 3XJ ax; BXk Bxk 3Xi 3Xj 3Xi 3Xj 8Xk
i V2 e G Y — 2 3
(31)

dm;
Now the values of 71 are obtained, following reference 5, as

al " a4 (32)

Further, it will, in general, be convenient to nondimensionalize the field points
which appear in equations (30) and (31) with respect to h = Ig Substituting equation (32)
into equations (30) and (31) and performing the indicated nondimensionalization yields

"’1,3"_”{_EX‘I’,J[H’C C%J} : (33)

and

_Am ) 20
ok anC Bt (R ]} (34)

14



G1

where

(é) 2 (35)

o ] o ] R e ] e | e
RN L I L R REE Rk
1,], H "H °H €> <%> <>

c.o

(36)

= [
1l
\

R@ﬁ)z,r <§I¥I)2 + <§ ﬁ)z:Kl - coszxH COS2Xv> - (); %) sin xy sin xy + (C %)sin Xy €oS Xy + (C %) sin Xy €os Xy

(37)

For convenience, the partial derivatives of are given in appendix A.

=1

It will be desirable to have the appropriate velocities and slopes for a wake whose position (but not strength) is
a mirror image across the X-Z plane of the original wake. Substitution of 180° - XH for XH in equations (35)
to (37) yields immediately
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(38)

and

o) ézﬁ"%)}a%‘%)
e o TR G )

&) i

(%]

'/‘"\ @ |
B[P,
:='|:>")"\ @
L =i :=-|:>
|| — 2|
r/Q\N—mj
=12 21

(39)

%: = /[(C %)2 + (C%)z + (;’ %)ﬂ(l - cossz coszxv) - <§ %) sin Xg sin Xy - (C %;—> sin Xy €08 Xy + (C %) sin Xy €08 Xy
(40)

Those partial derivatives of %—' which differ from the corresponding partial derivatives of B‘Aﬁ are given in
appendix B.



Wake in the Wind Tunnel

Consider the model located at the center of the coordinate system as shown in fig-
ure 3 with its wake inclined at angles xy and Xy (as in fig. 2).

The wake will intersect the horizontal plane of the floor at a value

s

tif

1
= —tan Xy, = ¢ tan (41)
z=-h V¢ v

The wake will intersect the vertical plane of the left-hand wall at

sl

_PB-b
'y=-(2B-b) ) 6 H )tan Xy = 7(2 - 0) tan xy (42)

Within the physical confines of the test section, the wake will intersect either the
floor or the wall first. It will be convenient to consider two separate cases: case I, where
the wake strikes the floor first; and case II, where the wake strikes the wall first.

Case I: wake strikes floor first.- This case may be distinguished by the fact that

X <X
Hl z=-h  H|y—_(2B-D) (43)
or
tan Xy
tan Xyy > ——m— (44)
H™ o2 -n)

In this case the wake descends from the model with skew angles Xy and Xy until
it intercepts the floor. At this point it can no longer pass downward and is assumed to
continue along the floor with the original horizontal skew angle of Xy but with Xy = 900,
Some distance farther rearward, the wake then intercepts the wall at the corner. From
this point on, the wake passes to infinity in the corner with Xg = Xy = 90°,

Case II: wake strikes wall first.- This case may be distinguished by the fact that

X >X
H |Z=-h H y:_(ZB_b) (45)
or
tan Xy
_ Vv 46
fan Xy < &y(2 - n) 40

17
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In this case, the wake descends from the model with skew angles XH and Xy until it strikes the wall. At
this point it can no longer pass sideward and is assumed to continue along the wall with the original vertical skew

angle of Xy but with Xg = 900, Some distance farther rearward, the wake then intercepts the floor at the corner.
From this point on, the wake passes to infinity in the corner with Xg = Xy = 900.

Interference in Case I: Wake Strikes Floor First

The wind-tunnel interference in case I is most easily approached by considering two simple systems before con-
sidering the more involved case of the wind tunnel itself.

The first simple system is that of a horizontal floor only (fig. 4). This simple system is, of course, that which
applies to ground effect and will be discussed again in a later section as such. For this case, by superposition from
the previous results, with the origin centered at the start of the upper wake

A ~ fan ¥

_m Ztﬁ X oY pZ X y V ¢z
L= — - b |lex el i -&. . 2 . tg P 4
1, ATV1< 77> l,JIEH’CH’CH]Jr%I,]‘szg()O m]EH nxV’§H+taan’§H+ﬂ

tan x
& ||eX - e o VY _(eZ 41
Yy=90° éi,”%H tan xy,: <§ H XH>’ (C "' l)j} 47

where the following notation has been used

P, . -®, . =&, .
[1,] lxvzgoo I,J E{,Y,Z] (I>1,]

XVZQOO E(’Y;z] - q)i,j E{’Yaz:l
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and where, following in the same line as reference 5, in order to maintain the proper direction of the image strengths
and image-induced velocities with respect to the coordinate system of the real wake

p=1 for i=y, and p=0 for i=x or i=2z
g=1 for j=y or j=2z, and g=0 for j=x

The slopes of the induced velocities for this system may be written as

A 3 tan y.
o= (28 e e X e Y 2l -6, . - z
‘Pi,],k AT V1( T ) ‘I’i,],k S T ¢ 0 ¢ H} +[ 1,],klxv=900 ‘I’i,],k ¢ % H tan Xy CH B0 vos Xg ; t

tan y
QT £y _(e2 ' - 9, -9 el V) 2
S N B R 2)} * Pk lxv=90° ik Xy T H Ry TCE Y]

(48)

where r=1 when k=y or k=2, and r=0 when k=x,

It is observed that adding slopes by superposition as in equation (48) amounts to adding the tangents of several
angles to find the tangent of the sum of the angles. Note that this procedure is valid only if @5 ik and all of the indi-~
vidual terms summed to obtain P 1k are small. "~

H

Now consider two such pairs of wakes disposed a distance 2B-b to either side of a solid wall as in figure 5.
For the four wakes, with the origin at the start of the upper right-hand wake, the induced velocity field of the entire

system is found to be
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Similarly, the slopes of the induced velocities are given by:

A Zﬁﬂ X ‘
(iDi,j,k:KI—;'VlC T >< i,j,k l: c ] l: ,],k,xv___goo' q’i,j,I%l%ﬁ tan Xy €
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The arrangement of images required to insure that there is no flow normal to any of the four walls of a closed

wind tunnel is shown in figure 6. It will be observed that the repetitive image set which forms the basis for this pat-

tern is that of the four wakes for which the induced flow field is given by equation (50). This image set is merely

translated laterally at intervals of 4B =4y{h and vertically at intervals of 4H =4¢h in order to form the complete
pattern.

Therefore, if the interference velocities caused by the presence of the walls are defined as

Am

A0 = 0 B 1

.. =0
1,]

(51)

the interference factor 61 § may be expressed immediately as
2

0 5=~ g’%rﬁ Zw f ‘I’i,j[C it C(% i 4m”>’ C(% - 4“)]
e

" mgw ngm cpi’j}xv=90° ; @i,ﬂ l%% - tan Xy, c(% - 4my> . ;&%’-, c(% - 4n) . 1]

+ Ebi’j LY ’xV=90‘] E(T’;- 72 - 1) tan xg), (2 - n- 4m), 4% - an) +ﬂ
e e o) -

o oo™ % [P 0t - 4m) - - a0 -

E’i,jleszzgoo - % xvzgo% [C(% - (2 =) tan xgp), ~{(f + (2 - 1 - 4m)), <(§ - 4n) - ﬂ

+(-1)P (b;’jE; qu, C(]Y; +2r(2 -7 - 2m)>, C(% - 4n§!

~ (Equation continued on next page)
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+ [Eb;’j‘xvzgoo - . ’]}[} % - tan Xy, C(% +2v(2 -7 - 2m)> - tt%r%%’ C(% - 4n> + IJ
+ lzl’;,j‘xH=xV:900 - <I>'i’]. XV:90;} [C(% -y(2 - n) tan XH)’ —CG_’I— +72 -7 - 4m)), —C’(Z‘ﬁ - 4n> + 1]

+ (-4 @i’j[iﬁ g:ﬁ’ -C@I- +2¥(2 -7 - 2m)>, -g(Z - 4n) - 2]

+ ;i;jix a0 - ‘I’i,Z] i% -;_% - tan Xy, -C(}y? +2¥(2 -7 - 2m)) tan o , C(lz-l 4n> - ]
v

+ :I’i,j N - q’i,j ]x _90% [ﬁ@;— -y(2 - n) tan XH)’ -§(% +y(2 -7 - 4m)>, —:g(—zﬁ - 4n) - E’ (52)
L H AV \'a

The rate of change of the interference velocities follows in the same manner. Defining

B35k = (53)

m
*Lik Ap Ui
the equation for 64,j,k may be written as

O ik -2§ Z Zq),]k[ ,c( 4m7/> C(—-/}n):l

m=-% n=-
m=n#0

[~ o] [>e]
tan x
X Y V /2
Z E %i:j’klxvzgo - (I)i,j,l;} [{ - tan Xy C(ﬁ - 4my) + t—aTITH’ C(ﬁ - 4n> + 1]

m=-° n=-%°

+ \Epi’j’k‘XH=xV=900 - éi’j’k‘xvs%% EZG;— -y(2 - n) tan XH)’ C(%’I- +9(2-7- 4m)>, C(% - 4n> + ﬂ

+ (1P ! [-—, gL - 4m> -7;’(5- 4n>-2]
-1) ¢ H ¢ s H (Equation continued on next page)
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. E;’j’k‘xH=xV=90° ; ég,j,kkv:go% {c(% 7@ - ) tan ), -6(% @ - - ), -(% - ) - ﬂ
+ (-1)p{1>;,j,kE B G e-n-2m), o%- 4n>]

{%,klwzgm - ‘I’i,j,% l%ﬁ R TCRR ) Bt AT 1]

* [‘I’{,j,klezxvzgoo - q’;,j,k‘XVzgoél [C(% -7(2 - ) tan xg), (f + (2 - 7 - 4m)), Y% - 4n) +E‘

B tan x
- X - -n - YV _efZ -
+ @i,j,k’xvzgoo 4’1,3'%‘ % q tan Xy §<H +27(2 -7 2m)> * an X C(H 4n>

+ -‘I’i,j,k’x' =¥, =900 - "I’i,j,k]X —900:“:6(% -v(2-7n) tan xH>, -CG;- +¥@2 -7 - 4m)), _C(% - 4n) - ] (54)
L H AV~ v

It will be observed that the central image, which represents the wake in free air, has been omitted in equa-

tions (52) and (54). This image is removed since it is only the wind-tunnel interferences which are of interest and
not the total induced fields of model and wind tunnel.

If XH and Xy are both 90°, the wake passes directly rearward without touching the wind-tunnel boundaries.
Thus, equations (47) to (50), (52), and (54) may be simplified by omitting all terms on the right-hand side of the equa-
tions except the first, fourth, seventh, and tenth sets of terms. If only Xg is 909, the wake will touch the floor, but
not the sidewalls of the tunnel. Thus, the third, sixth, ninth, and twelfth sets of terms on the right-hand side of equa-
tions (49), (50), (52), and (54) may be omitted. If only Xy is 90°, the wake touches one of the walls, but not the
floor. This set of conditions falls under case II, the equations for which are developed in the following section.
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Interference In Case II: Wake Strikes Wall First

The wind~-tunnel interference in this case is also most easily approached by considering simpler systems first.
The first such simple system (fig. 7) consists of two wakes disposed a distance 2B - b to either side of a solid wall.
The induced field of this system with the origin centered at the start of the right-hand wake is

_A 2¢ . y y 2 tan xp
%5~ Kn_,Il, Vi (‘ —ﬁ%z') ‘I’i,ll:C %, € v < %J+ %i,j xH:QOO- éi,ji]%% - v(2 - n)tan XH)’ C(-I-{— +9(2 - 77)), C(H+-y(2 - n)FiﬁTv

+ (-1 ‘I‘;,j[c T C(% +2(2 - n)), C%:}

&, & . 1gE-y(@-n)ta c(y+ @-n), {2 +v(2 - o Xy

+ i,j ]x 2900 i,j §<ﬁ Y n .1'1 XH)’ H Y 77)7 H Y n tan x (55)
H V.,

Similarly, the gradients of the induced velocities are given by

_Am 2¢3 X oY
q)iyj;k - K; Vl <- —Trl éi,j’k[c ﬁ’ c ﬁ’ C %IZI
, tan y
X y _ Z _ H
* [‘I)i,j,klezgoo B @i,j,lgl l%(ﬁ - v(2 - n) tan xH>, C(H +7(2 n)>, C(H +7(2 - g~ XV>:I
vl ok dh e o) oy
tan X

' 1 X Z H
+ [@i,j,klxﬂzgoo - <I>i,j,k} [CGI- -7(2 - n) tan xH), C(% +7(2 - n)), C(ﬁ +v(@2 - Mg XV)} (56)

If the two images are now placed below the preceding two images as in figure 8, the induced velocity field,
with the origin at the start of the upper right-hand wake, is given by
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and the gradients of the induced velocities are given by

1,1,k
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If 6.1 j is defined as in the preceding section, that is, as
b

Ay,
A, . =6, om ., 59
?1,i T LiAp (59)

then Gi i may be expressed as
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(Equation continued on next page)
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If o, . is defined as before, that is, as
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It will be observed that the central image describing the field of the wake in free air has been omitted from equa-
tions (60) and (62). This has been done since it is only the interference due to the walls which is of interest herein.

3. .
1?-]’k

If XH and Xy are both 90°, the wake passes downstream without touching the wind-tunnel boundaries. Thus,
equations (55) to (58), (60), and (62) may be simplified by omitting all terms on the right-hand side of the equations
except the first, fourth, seventh, and tenth sets of terms. (Note that under these conditions in each case, the equa-
tions are identical in cases I and II.) If only Xy is 900, the wake will touch the sidewall but not the floor of the wind
tunnel. Thus, the third, sixth, ninth, and twelfth sets of terms on the right-hand side of equations (53), (58), (60),
and (62) may be omitted. If only XH is 900, the wake touches the floor but not the sidewall. This set of conditions
falls under case I, the equations for which were developed in the preceding section of this paper.

Interference in Ground Effect

As mentioned previously, the initial wake image system considered in developing the wall corrections for case I
corresponds to ground effect. Thus, if the interference in ground effect is expressed as
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- 4h2
AG—4h

(63)

(64)

the interference factor can be determined immediately from equation (47) (by taking H=h, sothat {=1,and vy =1,
and so that Ag = A, and by omitting the term corresponding to the real wake in free air) as
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If 6. . is defined as
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Similar treatment of equation (49) yields

o= 2. .
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Note that if Xy is greater than or equal to 90° the wake does not intersect the ground. Under these condi-

tions, the foregoing equations become simply
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As in reference 5, it is possible to express the interference factors at the center of
lift in closed form when dealing with ground effect. Because of the vast multiplicity of
interference factors involved in the present analysis it is impractical to present complete
derivations of these factors as was done in the appendixes of reference 5. Instead, only
the final closed-form expressions are presented in appendix C. The specific closed-form
expressions for the partial derivatives of A and %, as used in deriving the results of

h
appendix C, are given in table I.

Computer Program

Program features.- In general, the foregoing equations cannot be evaluated in closed
form except for a few isolated special cases. Consequently it is necessary to resort to
high-speed digital computing equipment in order to obtain numerical values. A listing of
the program used to obtain the values which will be presented in subsequent portions of
this paper is presented in appendix D. A flow chart for this program is presented in
appendix E. Other programs were evolved in the course of the study which directly
obtained values for the average interference, distribution of interference, and interfer-
ence at the tail for lifting systems which could be represented by arbitrarily swept wings.
These latter programs are not presented herein since the modifications to the listing of
appendix D in order to obtain the more involved computer programs will be obvious from
an examination of references 6 and 7.

The program of appendix D is very flexible. A series of XH and Xy for which
values are desired may be inserted as input data. For XH not equal to 90°, an additional
vertical wake angle is added automatically, this angle being the particular Xy which pro-
vides the borderline value separating cases I and II. This feature may be eliminated by a
suitable input character if so desired; it is eliminated automatically if the extra angle is
within 0.005° of one of the input angles.

Either ground effect or the closed-tunnel case may be selected by input data. For
ground-effect calculations, &, 7, and v should be selected as 1.0.

In addition to the complete solution for all interference factors, two limiting options
are available. In one, the calculations are limited to only those interference factors which
pertain to velocities since these nine terms are those of primary interest in simple per-
formance testing. In the other option, the terms relating to the longitudinal gradients are
computed in addition to the aforementioned nine terms. This combination provides the
interference factors of primary interest for tests involving only performance and longitu-
dinal stability. The selection of either of these two options will reduce the computing
time substantially. These options are not available for ground-effect calculations since
the running time is so brief as to be immaterial.

It is obviously not possible to perform the required summations between infinite
limits as indicated in the equations of the earlier sections of this paper. After several
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trial calculations, it was found that summing over m and n between the limits of +3
appeared to achieve a reasonable compromise between speed and accuracy. Since the
actual test section occupies one corner of a repetitive group of four images, this choice
results in six columns of images to the right and seven columns of images to the left (as
viewed from behind) of the real test section. Similarly, there will be six rows of images
above and seven rows of images below the real test section. This image pattern differs
from that of references 4 to 8 wherein there were only three image sections on each side
of the test section, but the vertical arrangement therein is identical to that of the present
paper.

Numerical checks.- Within the limits imposed by the different image systems, the
interference factors obtained herein (when xH = 900) are identical to those of references 4
to 8 which, in turn, are completely compatible with the values obtained (XV =Xg < 900) by
more conventional wall-interference calculations. Small residual values are obtained
at Xg = Xy = 90° for certain terms for which symmetry requires that the values be zero.
This result occurs because of the lack of complete symmetry in the image systems of the
present paper and also in the image systems of references 4 to 8. These residual values
could be reduced by increasing the limits of the summations; however, the increased com-
puting .time should not be worth the minor increase in numerical accuracy.

Several of the gradients can also be compared with references 5 to 7 by comparing
the gradient computed herein with the plotted results for a series of points computed by
the procedures of the earlier papers. Numerous such comparisons have been made, and
in all cases the slopes agree.

The foregoing checks on numerical accuracy do not encompass cases in which the
wake may be deflected to the side as well as downward. There are, however, numerous
symmetries and equivalences which must be met in the results. These features will be
discussed in the following several sections of the paper. All of these additional tests are
met by the present theory as implemented by the program given in appendix D.

In ground effect it is possible to obtain a numerical check of the program accuracy
for values of XH other than 900 since closed-form solutions for the interference factors
at the center of lift have already been presented in appendix C. A comparison of the com-
puted values obtained in both manners indicated complete agreement.

An additional numerical test was performed by calculating the interferences for a
small model in the center of a square tunnel and choosing selected equal values of XH
and Xy~ These choices duplicate the wake and tunnel configuration of the "diamond" test
section of reference 17, for which results obtained by a different theoretical treatment are
available. After the resolution of interference vectors required by the differing coordinate
systems, the present results are identical to those of reference 17.
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Skew angles in the second quadrant.- It has already been noted that the image sys-
tems in ground effect differ according to whether or not the vertical wake skew angle is
greater than 90°. Thus, in ground effect, the program automatically chooses between
equations (65) and (67) or equations (68) and (69) according to the value of Xy

Although it may not be as evident, the equations developed for the closed tunnel will
also lead to an incorrect wake pattern if either Xg Or Xy is greater than 90°. As will
be discussed subsequently, appropriate values, for skew angles exceeding 900, can be
obtained from certain symmetry relations. This procedure is embodied in the computer
program, which automatically sets up an equivalent problem in the first quadrant and then
converts the results to correspond with the required angles in the second quadrant.

The superposition techniques used herein to obtain the field of wake segments of
finite lengths can lead to numerical difficulties (of the nature of overflow and underflow)
if the point of interest in the tunnel lies on or near an extension of any of the image wakes.
Particular difficulty will be experienced for wake angles near zero. The program as
presently constituted excludes values of the skew angles which are less than or equal to
zero. Minor modifications to the program at lines (D 108) and (D 111) will allow the use
of angles less than but not equal to zero; however, if zero is given as an input value, the
execution of the program will terminate at that angle. Since the results of references 8,
10, 13, and 14 indicate that reasonable testing conditions cannot be obtained at very small
skew angles, the practical effect of this restriction should be minimal.

Program storage requirements and running time.- The program of appendix D as
implemented in the CDC 6600 computers of the Langley Research Center requires 42 000g
(approximately 17 50010) spaces in memory in order to compile. Execution of the program
requires 24 000g (approximately 10 3007¢) spaces.

The time required for the calculations varies according to the particular grouping of
coefficients desired, the boundary conditions (ground effect or closed tunnel), and, since it
is permissible to omit certain terms in those cases, whether Xy Xy OT both are 90°,
The following table gives the approximate central processor time (in seconds) required for
each combination of one XH and one Xy

Approximate central processing time, in secondé, in the Langley comf)uter cor;nplex
c]?)%l:i?g%?é Coefficients | General | Xy =900 or xg =900 |y xy = 90°
All 9.3 5.7 2.1
Wind tunnel 6i,j and ; j x 5.7 3.5 o 17.71; N
6 only | 1.8 1.1 0.5 |
Ground effect All 0.8 04 |
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In addition, when the computer task includes compilation from the FORTRAN listing,
approximately 3.7 seconds will be required for the compilation.

Program efficiency.- The present computer program is not particularly efficient,
and the computer time required when the program is expanded (by the techniques of ref. 6)
to finite-span configurations is clearly excessive for routine application. In a sense, this
inefficiency was deliberate in that it was desired to compute all terms in order to obtain a
check on the symmetries rather than to use the symmetries to reduce the required running
time. Substantial reduction in computer time could be obtained by reprograming the calcu-
lations to take advantage of the symmetries.

Symmetry of Interference Factors

Wake in free air.- Because A and A' are both jointly continuous through at least
the third order, as can be seen from equations (37) and (40), transposing the i and j in
®i,j (eq. (35)) or <I>{j (eq. (38)), or transposing i, j, and k in any possible permutation
in ‘I’i,j,k (eq. (36)) or ‘I’{,j,k (eq. (39)) leaves these terms unaltered. Thus, there is a
possibility that certain of the interference factors will also be unaltered by such opera-
tions. This portion of this report considers these symmetries separately for the cases of
the wind tunnel first and then for the case of ground effect.

Wind-tunnel interference.- Examination of equations (52) and (60) indicates that an
additional requirement for equality of the correction factors for the interference velocities
is that (—l)p, (-1)9, and (-1)P*d must also be unaltered if the correction factors are to
be unaltered by transposing i and j. No combinations of i and j exist which satisfy

these requirements; therefore, in general, all of the correction factors for interference
velocities differ. On the other hand, examination of equations (54) and (62) indicates that
the additional requirement for equality of the factors for the slopes of the interference
velocities is that (-1)P, (-1)3*T, and (-1)P*4*T pe unaltered. Because of the way in
which p, q, and r are related to the i-, j-, and k-directions, this requirement is far less
restrictive than the corresponding requirement for the velocities, and immediately yields

61 j,k = 9ik,j (70,

Ground effect.- In ground effect, conditions for the equality are somewhat less
restrictive. For example, for the interference factors describing velocities, it is only
necessary that (-1)P*d be unaltered if the factor is to be unaltered by interchanging i
and j. Thus,

= (71)
5x’y Gy X

Similarly for the interference factors describing slopes, it is only necessary that
(-1)PTAHT pe unaltered by a permutation in i, j, and k. Thus, in addition to equation (70)
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6 =0 =0

X,¥,y Y,¥,X y.X,y (723.)

0} =0 =0

XXy Y.X,X X,¥,X (72b)
- (72c)

o] =0 =0 =90
X,¥,2 Y,X,z X,2,§ ¥,z,X

The foregoing symmetries are displayed in table II, which reproduces the computer
output for one set of conditions.

Interchange Equivalences

Between xg and xvy.- An interesting and sometimes useful set of equivalences may
be found by considering the manipulations shown schematically in figure 9. Consider an
arbitrary initial wind tunnel as in figure 9(a) with the wake deflected both laterally and ver-
tically, and at arbitrary point (x,y,z) at which the interferences are known. Rotation of the
entire picture 90° counterclockwise yields the configuration shown in figure 9(b). Then
reverse the configuration to a mirror image as in figure 9(c), and, finally, relabel the con-
figuration to be in accord with the standard symbol nomenclature of this paper. The fol-
lowing table lists the pertinent quantities relating to figure 9(d) in terms of the initial val-
ues of figure 9(a).

Initial tunnel Derived tunnel
XH Xy
Xv XH
x/H (1/v)(x/H)
y/H (1/¥)(z/H)
z/H (1/y)y/H)
4 1/y
¢ 1/(2 - n)
n 2-1/¢

Since it is obvious that there is no essential difference in the physical tunnels if the
above conditions are met, the interference factors will be identical in the two cases pro-
vided only that in the subscripts of ‘Si,j , z and y are interchanged for each other wher-
ever they occur. For example, in the final tunnel (fig. 9(d)), 0xz, Oy,y, and 0z y are
identical to 0y y, 0z g, and Oy 5, respectively, in the initial tunnel.

The gradients are only slightly more involved. In terms of constant unit lengths
these quantities would be related in precisely the same manner as the velocities; however,
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the gradients as obtained herein are with reference to the nondimensional quantities xj/H.
Thus, regardless of the direction of the gradient, its dimensions are those of a velocity per
unit semiheight. Since the semiheight of the original tunnel is interchanged with the semi-~
width of the final tunnel, these factors may be corrected to the new semiheight by multi-
plying the interchanged 4i,j,k by v (that is, for example, Oy x , in the final tunnel is
equal to () * (0z,x,y) in the initial tunnel).

These relationships are demonstrated in table Il by direct reproduction of the com-
puter output for cases meeting the foregoing criteria. These relationships are particu-
larly obvious for a centrally located model in a square test section, and still more obvious
when XH and Xy are identical.

The foregoing interchange relationships were very useful in checking the program of
appendix D for cases in which the wake is deflected laterally. Not only do they provide a
check on consistency of the results, but for Xy = 90° the computed interferences may be
compared directly with the computed values of reference 5 for the equivalent tunnel.

It is observed that for wind-tunnel stability tests of conventional aircraft configura-
tions, where the wake may generally be considered to be undeflected in either direction,
these interchange equivalences may allow one to obtain the correct interference factors
for side forces directly from available information (ref. 1) for "lift interference.”

Strictly speaking, the interchange equivalences apply only to vanishing small
models. If the model had been considered as a finite-span wing lying on the Y-axis of the
initial tunnel, figure 9 indicates that the span would be lying on the Z-axis of the final tun-
nel. The net result would be an entirely different spatial distribution of vorticity in the
tunnel., Under such circumstances, there is no reason to expect that the interference fac-
fors would follow the rules given here. Several sample calculations indicate that the theo-
rem is not greatly violated for relatively short spans (say o = 0.25); however, for large
spans, significant differences arise (table IV).

Between values of xy in the first and second quadrants.- Now consider figures 9(e)

and 9(5 7E-x>c‘e-pt for the positi:v_e direction of the Y-axis in figure 9(f), these two figures
are equivalent provided that the conditions given in the following table are met:

—Fiiéurevg(e) Figure 9(f)
- XH . 1800 - xg
n 2-7
y =y

The effect of changing the positive sense of the Y-axis with respect to the wake
depends solely on the number of differentiations with respect to y/H that are implied by
the subscripts of ®i,j, ®i,j,k, 06j,j, and 5i,j,k since, for complete equality of the results
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between the two figures, it would be necessary to differentiate with respect to -y/H for
figure 9(e). Thus, the interference factors in which the subscript y appears an even
number of times will be identical in the two cases, and those in which y appears an odd
number of times will be identical except for a factor of -1. As discussed earlier, this
interchange is utilized in the FORTRAN program of appendix D to obtain interference fac-
tors when XH lies in the second quadrant.

If the model is in simple ground effect, or if the model is centered laterally in the
closed tunnel, this interchange requires that the interference factors in which the sub-
script y appears an even number of times be symmetrical with respect to Xg = 90°,
Thus, this group of interference factors will be referred to as the symmetric factors
herein. Similarly, if y appears an odd number of times, the interference factors will
be antisymmetric about Xg = 90°; consequently, this group will be referred to as the
antisymmetric factors.

Observe that for laterally centered models a symmetric factor may have a substan-
tial value at Xg = 90°, but that it will vary relatively slowly for small departures from
90° because the rate of change of the factor must be zero at that point in order to allow
symmetry. Since most lateral-directional stability testing involves only small lateral
deflections of the wake, it may be perfectly acceptable to ignore the effect of Xg on
these factors, using only the values obtained at xp = 90°.

Further, in order that antisymmetry be maintained, all of the antisymmetric group
of factors must be zero at Xy = 900 if the model is laterally centered. On the other
hand, the rate of change of any of the factors with respect to Xy could assume a large
value. Thus some caution must be used in applying the present results if it is arbitrarily
decided that the lateral deflection of the wake will be ignored.

In the special case of a laterally centered model with Xg = 909, the conditions spec-
ified in the foregoing table require that the symmetric factors have a symmetric distribu-
tion across the Y-axis. Under the same conditions, the antisymmetric factors will have
an antisymmetric distribution across the Y-axis.

Between values of xy in the first and second quadrants.- Finally, consider fig-
ures 9(g) and 9(h). Except for the positive direction of the Z-axis in figure 9(h), these
two figures are equivalent provided that the following conditions are met:

Figure 9(g) Figufe 9(h)
Xy 1800 - xv
€ £/(2¢ - 1)
z -z
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The effect of changing the positive sense of the Z-axis is similar to the effects dis-
cussed in the preceding section. The interference factors fall into symmetric and anti-
symmetric groups depending upon whether z is repeated an even or an odd number of
times in the subscripts. Symmetric interference factors will be unaltered by the inter-
change, and antisymmetric factors will be altered in sign only.

If the model is centered vertically in the tunnel, the symmetric factors will be
symmetric about Xy = 90° and the antisymmetric factors will be antisymmetric about
Xy = 90%. Again the symmetric factors may have significant values at xy = 90°, put
these factors will vary only slowly for small deviations from 90°, The antisymmetric fac-
tors must be zero when Xy = 909, however, there is a possibility that they may be signifi-
cantly altered for comparatively small vertical deflections of the wake. Furthermore,
when Xy = 909, the symmetric factors will have symmetric distributions over the Z-axis
and the antisymmetric factors will have antisymmetric distributions over the Z-~axis.

It is important to observe that this interchange is completely voided in ground effect.
The reason, of course, is that there is no restraint on the flow above the model. The only
restraint is the ground below the model.

APPLICATION OF RESULTS

Wall-interference theory, in general, is limited to the calculations of the interfer-
ence velocities and gradients which the walls contribute to the overall flow in the wind
tunnel. Ideally, the process of correcting wind-tunnel data involves calculating the effect
of these velocities and gradients upon the model and then subtracting these effects to
obtain interference-free data. This ideal process is seldom attempted in practice.
Indeed, for some of the more exotic V/STOL vehicles, there is no background theory
available with which to make such calculations. In other cases, such as wings (for which
modern vortex-lattice techniques could be used for relatively accurate calculations), the
required computer time for elaborate correction techniques is excessive, and corrections
to data are generally made by far more approximate techniques (ref. 1).

An alternative to the direct calculations and removal of wall-interference effects is
to consider data correction as a problem in similitude. This is the most generally applied
technique. In this manner, the performance as measured in the tunnel becomes simply
the correct performance for an altered flight condition, or even for a model slightly
altered from that actually tested in the wind tunnel. At times, such similitudes actually
lead to alternative means of approximate direct calculations. This portion of the present
paper will discuss a number of such techniques which, hopefully, will be of some help in
applying the results of the foregoing analysis.
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Interference Velocities

The preceding portions of this paper have obtained the interference velocities along
each of the three axes of the tunnel as caused by forces along the three axes. The com-
plete interference velocities are therefore given by

Au = Z Agj x (73a)
i
i

Aw =Z Agj 5 (73c)

1

Altered flight velocities.- The interference velocities given by equations (73) are
superimposed on the main wind-tunnel velocity. Conceptually, the simplest means of
accounting for these interference velocities is to assume that the measured data corre-
spond to the performance in free air of a model having a forward speed of V + Au and a
sink rate of Aw while it is translating to the left at a velocity of Av. When the main tun-
nel velocity is small, this technique may be reasonably satisfactory since it corresponds
roughly to the conditions occuring during a landing approach in a cross wind. At speeds
corresponding to hovering (or near hovering) conditions it may even be the only reason-
able approach; however, in general, in order to obtain meaningful equivalent flight condi-
tions, it will be convenient to express at least one of the interference velocities as an

angular change at the model.

Altered yaw angle.- Consider first an equivalent flight condition in which the longitu-
dinal and vertical interferences are still considered as mere alterations in linear speeds,
but in which the lateral interference velocity is to be expressed as an alteration of the
effective yaw angle of the model. From figure 10, it may be seen that the effective for-
ward speed becomes

Ve = J(V+ Au)2 + (AV)2 (74)

and the corrected dynamic pressure is

q, = %pEV + Au)2 + (Av)z:, (75)

All of the coordinates in the tunnel-based axis system must now be altered to corre-
spond with the new axis system by means of a rotation through an angle tan-1 [Av/ (V+ Auﬂ
about the Z-axis. In matrix form
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V + Au Av
Xc o1 Ix

l/(V + Au)2 + (Av)2 ﬁf + Au)2 + (Av)2

i -Ay V + Au 0 (776)
‘/(‘-/' + Au)2 + (AV)2 /(7+ Au)2 + (Av)2

Z 0 0 1} |z

The correctéd yaw angle is obtained by transforming a unit vector along the forward
axis of the model into the new coordinate system, and then observing that

y
tan ¥, = - % (77)

Substitution of equation (76) into equation ('77) yields

Ay
Ve ag ttany

tan lljc = Av - (78)
1- V + Au tan ¥
or
Ve =¥ + &Y (792)
where
- tan-1[_AV
AY = tan <V " Au) (79b)

It is easily verified that a is unaltered by the rotation since the rotation is about the
Z-axis.

In terms of the correction angle Ay, the matrix transformation given by equa-
tion (76) becomes

X cos AY sin Ay Of|x
ye| =|-sin AV cos AY 0}y (80)
Zc 0 0 1 Z

In the new coordinate system the force coefficients are obtained by subjecting the
resultant-force vector to the same transformation as the simple coordinates (eq. (80)),
and then normalizing the force components with respect to the corrected dynamic pressure
given by equation (76) to obtain
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Cpe = (CD cos AY + Cy sin Aw)/<%9> (81a)

9
CYC = (—CD sin AY + Cy cos AIP) T (81b)
qc .
where
9 AW\2 | /Av\2 (814)
< 1F) &
In a similar manner, the components of the corrected moment are obtained as
de
Clc = (CZ cos AY + Cp, sin Az,l/) T (82a)
- I9c
Cm = (—Cz sin AY + Cyy cos A\P) T (82b)

Cn, = Cq /<%£> (82¢)

Altered yaw angle and angle of attack.- An alternate viewpoint is to consider that the
effective axis of the tunnel airstream is altered by the wall interference and that an equiv-
alent flight condition may be obtained by merely resolving all of the data about the cor-
rected stream axis. This is, by far, the most usual manner of dealing with wall effects.
Referring to figure 11, it is obvious that the effective forward velocity along the new axis

system will be

V, = (V + A2 + (av)? + (aw)? (83)

or, in terms of dynamic pressure

de Au\2 | (Av\2  [Aw)2
?*(“7) 7N (84)
All of the coordinates in the old tunnel-based coordinate system must now be altered

to correspond with the new effective stream axes. The transformation may be
accomplished by rotating the axis system about the Y-axis (fig. 11) through an angle

tan-1 [Aw/ (V + Au):l and then about the new vertical axis through an angle

tan-1 I:AV/ ﬁV + Au)2 + (Aw)z:,. Substantial complications are contributed by the
fact that only one of the foregoing axis transformations may be taken about the

original wind-tunnel axis system.
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£7

In matrix form

-9
< \/(V +Au)2 + (Aw)2 Av

¢ J@+Au)2 + (Av)? + (aw)? /(V+Au)2 + (Av)2 + (Aw)2
Voo — -Av \/(}/'+z}u)2 + (Aw)2
‘ \/(V;Au)z + (Av)2 + (Aw)2 V(?/’+Au)2 + (Av)7+ (Aw)2
Ze 0 0
L J L

or, after multiplication of the transformation matrices,

ki

V + Au

V + Au
J(V + Au)i + (AW)2

. A~AW
\kV + Au)2 + (AW)2

W+Au? +(AV)2 + (Aw)2

v(V-+Au)Z + (Av)Z + (Aw)2

0

—_—tY ’ x]'
‘/(V+ Au)2 + (Aw)2 |

I

V + Au
ﬁ/’ +Au)2 + (Aw)2

(85)

1o

Aw :x

ﬁ/’ +Au)2 + (Av)2 + (Aw)2

_— -Av(V +Au) (v +au)? + (aw)? - Av(Aw)
¢ \/(V +Au)2 + (Aw)2 \/6/—+Au)2 +(av)2 4 (Aw)? \/(V+Au)2 + (Av)2 + (Aw)2 {(7V+Au)2 + (Aw)2 \/(V+Au)2 + (Av),zﬁi-_(—Aw)2 y
- -Aw V + Ay
\/(V+Au)2 + (aw)2 \[V+Au)2 + (Aw)2

(86)



Expansion of equation (86) into its scalar components yields

(V + Au) X + Avy + Awz

87
V5 R 1 (@) + (aw? ®7
-Av(V + Au)X + [V + Au)2 + szjy - (Av Aw)z (88)
Ve = —— —
© \/(V + Au) + (Av)2 + (AW)2 fV + Au)z + (Aw)2
_-(AW) X + (V + Au)z (89)
Zo = y

\KV + Au)2 +V(AWW)2

The corrected angle of attack «, and yaw angle yl/c(= -Bc) are obtained by trans-
forming a unit vector (-cos @ cos ¥)1 + (cos @ sin ¥)7 + (sin @)k along the for-
ward longitudinal model axis into the corrected axis system, and then noting that for

this unit vector

Ze

tan ¢ = e -
i \ﬁ‘ch’Ycz \/I'Zc2

(90)

and

y
tan ¥ = —;fg (91)

Performing the indicated operations on equation (90) yields

tan o = Aw cos a cos lP + (V + Au) sin fx o B (62)

KV + Au) + (Aw)2 [Aw cos a cos ¥ + (V + Au) sin cﬂz

which may be simplified by using the relationships of the right triangle to obtain

Aw cos @ cos ¥ + (V + Au) sin o (93)

/(;+ Au)Z + (Aw)2

When ¢ =0, equation (92) may be reduced to

sin ozc
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tan @ + Aw

tan a, = V+Au _ap <a +tan-1 Aw (94)
1--2Y ina V + Au
V + Au

Therefore, when ¥ =0

Q. = a + Aa (95a)
where

Aa = tan”1 ;’—A—W—A— (95b)

+ Au

Similarly, performing the aforementioned operations on equation (91) yields

Av(V + Au) cos a cos ¥ + EV + Au)2 + Awg—lcos a sin ¥ - Av Aw sin

ta_n lpc = N
/(V + Au)2 + (Aw)2 KV + Au) cos @ cos ¥ - Av cos o sin ¥ - Aw sin 07_]

(96)
For the special case where a = Aw = 0, equation (96) reduces to
Av
+ tan ¥ -
tan ¥, = V+Au = tan (1,1/ +tan-1 BV (97)
1-=2% tany V + Au
V + Au
or
Yo =¥ + AY (98a)
where
AY = tan~1 —AY (98b)
V + Au

Next, the force coefficients must be resolved about the corrected axis system.
This may be accomplished by transforming the resultant-force coefficient
Cr =1Cp +jCy +kCy, in a manner identical to that of equation (86) and non-
dimensionalizing the result with respect to the corrected dynamic pressure

ac = 1o(v + a0 + (a2 + (aw)Z]; thus,
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VZEV + Au)Cp + AvCy + Aw CLJ

Cp = DTV (99)
¢ KV + Au)2 & (AV)2 + (Aw)ﬂs/z
C Vz{ Av(V + Au) Cp + (v + a0 + (aw?]ey - av aw CL} (100)
Y :
¢ [V + Au)? + (Av)2 + (AW)J 2 \/(V + au)? + (aw)?
V2|-AwCp + (V + Au) C
CL,= Lawep + (v aw oy (101)

[V + Au)2 + (Av)2 + (Aw)z:' \/(V + Au) + (Aw)

Observe that the lift-drag ratio is also altered; that is, divide equation (101) by equa-
tion (99) to obtain

(L _|__-AwCp + (V + Au) CL (V + Au)? 4 (Av)2 + (aw)2
| _> - (102)
D/c |(V + Au) Cp + AvCy + AwWC, (V + Au)2 + (Aw)2

In addition, the moments must also be resolved about the corrected axis system.
Following the same procedure as for the forces, rotate the resultant moment vector into
the new coordinate system and nondimensionalize with respect to q, to obtain

_ Vz[(V + Au) C7 + AvCyyy + AW Cn]
fe ” BV + Au)2 + (Av)27+ (Aw)2]3/7

(103)

o \' { Av(V + Au) Cy + [V + Au)2 + (Aw)z:’ Cm - Av Aw Cn}
me = - 104
¢ [V + Au)2 + (AV)2 + (AW)ZJ \/(V + Au)2 + (Aw) (104

Vz[ Aw Cz +(V + Au) Cn] .
(105)

Cng
[V + 8w + (av)? « (2w)2] v + Aw)2 + (w2

Scalar qualities.- Scalar quantities such as power are unaltered by the foregoing axis
transformations; however, if such quantities are formed into nondimensional terms by
dividing by V or q, then the nondimensional parameter must be corrected to correspond
to the corrected V or q. Thus, for example, if
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C“ ~ Momentum (106a)

qS

then

Ccy V2
c, = — , (106b)
¢ EV + Au)2 + (Av)2 + (Aw)2:|

Particular caution is required in correcting certain other parameters; for example, the
tip~-speed ratio used in helicopter tests

_ Vecos a
B= Tip speed (107)

requires corrections to both velocity (eq. (83)) and angle of attack (eq. (92) or (93)).

Interference Gradients

General comments.- If the interference velocities were completely uniform over the
model, there would be little difficulty in correcting wind-tunnel data; indeed, the foregoing
several sections of this paper would suffice for an almost complete treatment. If the
model was extraordinarily small, the deviation of the interferences from the average val-
ues would be negligible, and thus, in combination with the small ratio of model to tunnel
sizes, it would be permissible to neglect the effect of the interference velocity differences
over the model. Unfortunately, in the usual wind-tunnel tests, the model has significant
dimensions compared to the wind-tunnel test section, and significant variations in wall-
induced interference velocities occur over the extent of the model. Thus, it is necessary
to account for the effect of these differences in interference velocity over the model.

The actual techniques by which corrections for interference nonuniformity could be
calculated depend entirely upon the available theoretical aerodynamic treatments in non-
uniform flow for the particular model under test. For a conventional airplane configura-
tion, the powerful numerical techniques of vortex-lattice theory, at least in principle,
could be used to estimate the effects of interference nonuniformity and to develop correc-
tions to the measured data. Unfortunately, this approach might possibly involve such
excessive amounts of computer time that it would be uneconomic for routine use, and even
then would not account for the possibility that the nonuniform wall-induced interference
might alter flow separations occurring as the model conditions approach either complete
or local stall. For less conventional models, this technique is not generally available,
and for many of the profusion of V/STOL aircraft types, there is no truly adequate theory
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at all. Thus, in most cases, it will be necessary to use correction treatments which are
only crude approximations of the actual effect of flow nonuniformity.

Even if the most rigorous type of theoretical treatment were available for correcting
data, a certain amount of caution would be required. If the size of the corrections becomes
comparable to the magnitude of the measured data, it is obvious that the corrected data are
as much a product of theory as of the wind-tunnel measurements. At this point it becomes
questionable as to whether or not the wind-tunnel tests have contributed significantly to the
determination of the model characteristics.

The surest procedure which avoids the problems inherent in large corrections for
flow nonuniformity is to avoid testing models which are large relative to the test-section
dimensions. Many rules of thumb have been offered as to allowable model sizes; however,
none of these rules is failure free. This trend is enforced by recent studies which indi-
cate limits to theoretical calculations because of wake deformation (ref. 18) and the need
for a reduction in allowable correction size when testing swept wings (ref. 19). When the
primary concern is nonuniformity, a reduction in model size is doubly helpful: first, the
reduction in area ratio reduces the overall corrections immediately; second, the model
does not extend as far in any direction and thus, for a given rate of change of interference
in that direction, will experience a lesser nonuniformity.

If the model size is reasonably small, many of the interference gradients are rela-
tively uniform across the model. Thus, some simple concepts can be used to develop com-
paratively simple first-order corrections. Thus, it is profitable to discuss a few of these
concepts in the following pages. For the sake of convenience in the discussion, the model
axes will be considered to be coincident with the principal axes of the tunnel. Similar con-
siderations would apply for any other model orientation, although considerable resolution
of the interference vectors might be required to obtain an equivalent frame of reference.

The direct gradients.- Consider first the rates of change along each axis of the inter-
ference velocities directed along those axes; that is,

2o~ ) A (108a)
i

'j(yA/‘;Ii =Z A¢iyy : (108b)
i

'g(,ﬁ/‘;'{) Z $i,2,2 (108c)

A positive value of any of these three derivatives indicates that the interference
velocity increases with positive distance along the axis. Compared to a uniform stream
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in free flight the equivalent free-air model would have a velocity field which would expand
along these axes. While such a concept seems difficult, it is precisely equivalent in the
X-direction to the q; /q term applied to tail forces in most stability analyses. For con-
ventional models, it would be expected that the largest effect of these derivatives would be
an alteration in the effective dynamic pressure at the tail.

The gradients 8(Aw)/8(x/H) and 8(Au)/3(z/H).- Consider next the gradients

o(Aw
B(x 71—1)5‘= z A¢i 7,x (109a)
i

8(Au) _
a(z/H) ~ z APi,x,z (109b)

The positive sense of these gradients is indicated in figure 12(a). Along the X-axis
the distortions in the vertical components of the interference velocities are the same as if
the model in free air were rotating about the Y-axis in a nose-up direction. On the other
hand, the horizontal velocities along the Z-axis are those that a model in free air would
experience if it were rotating about the Y-axis in a nose-down direction. Furthermore, in
consequence of the symmetries of the interference factors (5i,j,k = Gi,k,j): the two equiva-
lent rotational rates must be identical except for their opposing directions.

If the model was spherically symmetrical, and if there was no forward velocity, such
a distortion of the flow field might have little or no effect on the observed performance.
Such conditions are seldom met, however, and the effects encountered in practice may be
approximated by considering separately the different portions of the model. If the model
was a conventional aircraft and lay in the X-Y plane, the effect would be primarily that of
an effective pitch rate at constant angle of attack; that is (from ref. 2),

_1 a(aw)
é_H (/) (110)

The concept of an equivalent rotational rate may be helpful in developing corrections
since a large number of studies exist in aerodynamic stability theory for the estimation of
the effects of such rates of rotation. (See, for example, the survey presented in ref. 20.)
An alternate viewpoint might be to try to account for the combined effects of an altered
wing camber, tail height, and tail incidence (ref. 2) without any rotation rate.

If the model had a significant vertical extent (for example, a biplane of large gap),
it might well be necessary to consider separately the effects of the tail system rotating
at 6 anda biplane cell rotating at -6. Further, if the model had a high T-tail, it might
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be necessary to consider the additional alteration in the effective longitudinal velocity at
the tail which would result from the vertical displacement above the plane of the lifting

system.

For some simple systems, a search of older studies may even produce means of
calculating the effects of these gradients directly. For example, reference 21 examines
directly the effects of a linear gradient of induced velocity normal to the plane of a cen-
trally hinged rotor and finds that the effect is largely that of an altered lateral flapping.
Observe that if such a rotor is tested at extreme negative angle of attack the direction of
the effects will change as the rotor plane approaches the vertical. It should also be
observed that if the rotor hinges are eliminated and the blades are very rigid, that the
effect of this gradient changes from a relatively innocuous lateral tilt to a very powerful
pitching moment (ref. 22).

It is important to observe that entirely different corrections are appropriate to dif-
ferent configurations. For some models many of the interference velocities and gradients
calculated herein will have no significant effect whatever and thus can be ignored. This
does not necessarily mean that they can always be ignored safely since comparatively sim-
ple changes in configuration may affect the relative magnitudes of the different effects.

The gradients 8(Au)/8(y/H) and 8(Av)/d(x/H).- The gradients

JTL'aa(yA ) = Z %1,%,y (111a)
i

and

g (z?/VH) Z P,y ,x (111b)

are shown schematically in their positive senses in figure 12(b). Again the two effective
rotations are equal but in opposite directions because of symmetry.

If the model was a conventional aircraft, the effects would be much the same as if
the wings were experiencing a constant rate of yaw while the fuselage and tail would be
experiencing the same rate of yaw in the opposite direction. The overall effect on the
yawing moment corrections would depend upon the balance of these two effects.

If the model is.a helicopter rotor, the effective rotational speed is increased when a
blade lies along one axis and decreased when it lies along the other. There is no change
in the average effective rotational speed of the rotor even though a small ripple is imposed
on this rotational speed.
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The gradients 8(Av)/8(z/H) and 3(Aw)/8(y/H).- These gradients, shown schemat-
ically in figure 12(c) are given by

a(Av)
a(z/H) . #1,y,2 (112a)
3(Aw)
S Z 1,2,y (112b)

Again because of the symmetry of the interferences the two gradients are equal but
opposite in direction. Thus, an axisymmetric model, such as a propeller, located in this
plane would have no effective change in rotational rate. On the other hand, a wing lying
along the Y-axis would be subjected to a wall-induced flow which would be the equivalent
of a constant rate of roll in free air.

One aspect of dealing with distortions on the basis of a simple gradient should be
noted carefully. Observe that for the wing on the Y-axis, only the antisymmetric part of
the distortion can be described by a single gradient at the center of lift. Symmetrical dis-
tortions are entirely lost. Thus, if the interference increases or decreases symmetrically
outward from the center of lift (as is usually the case with at least part of the interference
in the lateral direction) this information will be lost. Such symmetric vertical interfer-
ence along the Y-axis is equivalent to an effective alteration (with respect to free air) of
the wash-in or wash-out of a wing (ref. 2). Similarly, a lateral gradient of 8(Aw)/8(y/H)
would be equivalent to an effective alteration of the spanwise distribution of airfoil-section
camber. Such wall-induced distortions can have significant effects on several observed
quantities (such as the stall angle) and if the wing is swept can have significant effects on
the longitudinal pitching moment as well (ref. 6). In correlation studies in which tests of
the same model in different tunnels are compared (such as ref. 23) the pitching moments
often correlate less well than the lifts and drags. The reason for the poorer correlation
of moment can often be found in the failure to account for the effect of wall interference on
the spanwise load distribution of a swept wing or a failure to account for the differences in
wall interference at the wing and the tail (as in ref. 24).

If the model has any significant size with respect to the tunnel dimensions, it will be
necessary to account for this size both by superposition of the present results to obtain
interference factors corresponding to the actual finite-size configuration and by using the
actual distributions of interference over the model in order to develop proper corrections
from the interference velocity calculations. Some aspects of this problem will be exam-
ined in a later portion of this paper.
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NUMERICAL RESULTS

Since the interference factors are expressed herein in an open form, it is difficult to
determine the effect of changes in the inpuf variables by examination of the equations them-
selves. Consequently, numerical results obtained from the previously described computer
program will be presented to illustrate certain effects on the interference factors.

The only wind-tunnel configuration for which the present numerical results were
obtained has a width-height ratio y of 1.5. This width-height ratio approximates that of
many operational wind tunnels. The interchange symmetries discussed earlier allow an
immediate conversion of these values to correspond to a tunnel having a width-height ratio
of 2/3. The model is centered in the tunnel at all times.

Interference at Model

Effect of xy.- Figure 13 compares the interference factors in the wind tunnel and
in ground effect for a wake which is laterally undeflected (xg = 90°). As predicted by
the prior consideration of the effect of interchanging horizontal skew angles between the
first and second quadrants, all of the interference factors for which the subscript y is
repeated an odd number of times (the antisymmetric group with respect to y) are zero
throughout the entire range of vertical skew angles. The remaining group (or the sym-
metric group with respect to y) displays a pronounced dependence upon the vertical skew
angle with lérge values being obtained at low vertical skew angles.

The trends of the symmetric group of factors are similar in both the wind tunnel and
in ground effect. Note that the factors for ground effect are defined with respect to an area
(AG = 4h2) which is only two-thirds the reference area (AT =4BH = 47H2) with respect to
which the factors for the wind tunnel are defined. For small vertical skew angles, this
factor is the largest part of the difference between the corresponding factors in the tunnel
and in ground effect. Thus, at low wake angles, the floor of the tunnel provides the major
contribution to the level of interference at the model. (This situation might be altered if
the model were placed differently in the tunnel. The correspondence would be greater if
the model were below the centerline of the tunnel; however, if the model were placed well
above the centerline the ceiling would assume greater importance.) At higher wake angles,
this relationship fails (for example, 0x x x in fig. 13(a)) reflecting a much greater effect
of the walls and ceiling on the interference factors.

If a lateral wake deflection is superimposed on the vertical deflection, as in figure 14
(XH = 600) and in figure 15 (XH = 300), significant changes are observed in the interference
factors. First, the antisymmetric group of factors are no longer zero and may assume
substantial values (for example, 5x,y,z in figs. 14(b) and 15(b)). Secondly, because the
wake strikes the wall first (case II) for yxy >68.950 at xp = 60° and for xy >40.890 -
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at xg = 30° (egs. (44) and (46)), significant changes in the trend of several of the factors
may be observed at these points (for example, 3 7,y in figs. 14(i) and 15(i)). No simi-
lar alteration is observed in the ground-effect interference factors since there is no wall
present to alter the wake pattern in ground eifect. In general, it will be observed that
there is some increase in almost all of the interference factors as the horizontal skew
angle decreases.

Effect of xpg.- Similar presentations of the interference factors in figures 16 fo 18
directly illustrate the variation of the interference factors with Xge Figure 16 has been
prepared for Xy = 90° where the wake never reaches the floor. Figure 17 treats a ver-
tical skew angle of 60° where the wake strikes the wall first for all Xg < 49.119, and fig-
ure 18 treats xy = 30° where the wake strikes the wall first for all Xg < 21.05°, In
ground effect, varying xg produces relatively mild changes. This would be expected
since with suitable resolutions of the axis system, the same results could be obtained from
the xg = 90° calculations. There is little correlation between the interference factors
for ground effect and for the wind tunnel since the predominant effects on the variation of
the factors with ¥y in the tunnel are caused by the walls in this case, and these walls are
not present in ground effect. Some noticable changes in slope with respect to xg may be
observed as the wake changes between striking the wall first and striking the floor first
(for example, 0x,x,x in fig. 18(a)). Note that in figure 16 where xp = 909, the antisym-
metric group of factors with respect to z (those in which the subscripts contain z an
odd number of times) are zero in the wind tunnel. They are not zero in ground effect
because the boundaries are not symmetric with respect to the X-Y plane.

Distribution of Interference Factors Over the Principal Axes

Longitudinal axis.- Figures 19 to 24 show the distribution over the X-axis of the fac-
tors representing the interference velocities for vertical skew angles of 90°, 60°, and 30°
in combination with horizontal skew angles of 90° and 60°,

The physical concepts of nonuniform interference as rotational rates require that the
interference velocities be simple linear functions of distance along a given direction. If
this relationship is valid, at least approximately, in the region occupied by the model, it
may be possible to obtain relatively simple closed-form expressions for the corrections
resulting from the nonuniformity of the wall effects. Figures 19 to 24 examine the degree
of approximation involved in such a linearization by comparing the values obtained by a
direct calculation at a series of points along the X-axis with those obtained by using the
interference gradients in the linear relationship

— B s X &, .
6i,]‘ = 51,3 §_0+r1' 61,],X x_o (113)

H H
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Except for the combinations of skew angles which require certain factors and their
gradients to be zero, it will be observed that very significant differences are obtained
between the values at the model and the values corresponding to other points along this
axis. These differences will affect measured pitching moments, particularly if the model
has a long tail length. In most cases, the linear relationship using the interference gradi-
ents (eq. (113)) yields a reasonable approximation to the directly calculated interference
factors for a distance on the order of one-third of a semiheight along the axis. This
usable distance may shrink dramatically for wakes which have large deflections in either
direction. A noticeable example of this trend is az,x (figs. 21(c) and 24(c)), where the
model must be relatively small longitudinally if equation (113) is to be used.

Lateral axis.~ A similar comparison over the lateral axis is given in figures 25
to 30. Observe that the y-distance is nondimensionalized with respect to the semi-
width B in these figures. Thus, the lateral analog of equation (113) becomes

s 2 = HE X. PR
%, = OL,ily 0o VB %5,y (114)

H

y
20
H

The interference distribution over the Y-axis is far from uniform. For the inter-
ference factors which are antisymmetric with respect to y, the linear relationship given
by equation (114) will yield reasonable results over about the central quarter of the tunnel.
The situation is far worse with respect to the Symmetric interferences. The lateral varia-
tion of these interferences may be totally lost if represented by equation (114). (See, for
example, 0,y and 0y 7 in fig. 27(c).) These interferences, being symmetric, cannot
be represented as equivalent rates of rotation. Instead, their interaction with the model
must be studied in detail. The effect on the measured data may be only a change in stall
angle for an unswept wing; however, these symmetric interferences can produce signifi-
cant pitching moments on a swept wing.

Vertical axis.~ A similar comparison along the vertical axis is presented in fig-
ures 31 to 36. In this presentation, the interference factors are obtained from the gradi-

ents as

+28; 5 7 (115)

%= %z ty
H

Z_o
H

As might be expected, the behavior over this axis is similar to that over the Y-axis
since both axes are transverse to the tunnel stream axis. The anstisymmetric factors
with respect to z are represented reasonably well by the linear relationship for about
the central quarter of the tunnel height; however, linear representation of the symmetric
interference components is satisfactory. The rapid increase of interference near the floor
when the wake is sharply deflected might be expected to lead to a reversed flow at the floor
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itself as in references 8 and 11 with limitations on the maximum wake deflection (or mini-
mum forward speed) which can be tolerated in the wind tunnel (refs. 2, 10, 13, and 14).

Effect of Finite Span

The preceding results, and the theoretical treatment given in the present paper, are
all obtained by assuming that the model is vanishingly small. This artifice considerably
simplifies the mathematical treatment and yields ieasonably accurate interference factors
for models which are quite small with respect to the wind tunnel, In practice, models tend
to be rather too large for such a simplistic treatment, and the interference factors may be
significantly altered for models of different sizes or of different configurations (refs. 1, 3,
5, and 6). In such cases, the theoretical treatment of the vanishingly small model can be
used as a building block to obtain the appropriate results (by superposition) for models of
large size. Reference 6 presents a systematic means of accomplishing these superposi-
tions, and reference 7 provides specific FORTRAN programs (based on the theory of
ref. 5) for a wide variety of configurations. The identical treatment has been applied
herein to develop interference factors for an arbitrary swept wing of finite size. Since the
one significant difference between the present programs and those given in appendixes B,
C, and D of reference 7 is the provision of an arbitrary yaw angle, these programs are not
reproduced herein; however, a few sample calculated results are now presented. These
results should indicate the nature and magnitude of some of the effects of finite size.

- Effect at model.- Figures 37 to 40 illustrate the effect of the ratio of model span to
tunnel width on the interference factors. In all cases, the model is assumed to be an
unswept wing, centered in the wind tunnel, and mounted at zero angle of yaw. While there
are a few exceptions (for example, in fig. 38(g) for 0z x,x When xy > 35°), as a general
rule the interference factors decrease continuously as the span-width ratio ¢ increases.
This should not be construed as a decrease in the interference, for the actual interference
depends on the product of the interference factor and the area ratio

Am w82 _7/s\2B _ 7 2
______(_) o =702y (116)

where Aj,, has been taken as the area of a circle circumscribing the wingtips. Exami-
nation of figures 38 to 49 indicates that the reduction in the interference factors is seldom
of sufficient size to overcome the large increase in the area ratio Aﬂ Thus, the inter-
ference in the tunnel will increase with increases in model size, but not quite in proportion
to o2. The effect of o is sufficiently great that finite span should certainly be included
in the calculations whenever the model span exceeds about 10 percent of the wind-tunnel
width,

55



Effect on distribution over the principal axes.- The distributions of interference fac-
tors over the principal axes have been obtained for a centered unswept wing with zero yaw
when the wing spans half of the tunnel width (o = 0.5). These distributions are presented
in figures 41 to 58. The directly calculated distributions are compared with those obtained
from the gradient using the values calculated at the center of the wing and also using the
values obtained by averaging over the span of the entire wing. The lateral distributions
(figs. 47 to 52) are presented in terms of y/s where s is the semispan of the wing.

In terms of this parameter, equation (114) may be rewritten as

3= Ouily_, +ovg By (117)
H ' H

Examination of figures 41 to 58 indicates that the extent of agreement between the

direct and linearized 5i,j is about the same as for the vanishingly small model. Along

the lateral axis there is actually some small improvement presumably because the wake

itself is spread over this axis. As might be expected, using the average values of the

slope and intercept in equation (117) yields a better approximation to the distribution over

the Y-axis; however, there is still a substantial loss of information if the symmetric fac-

tors (with respect to y) are represented by the linearized form. The values along the

X- and Z-axes are represented better by using the centerline values in equations (113)

and (115) since the directly computed values are not averages over a finite span but repre-

sent only the value on the axis itself.

Effect of differences in configuration.- The effect of differences in configuration
is briefly examined in figures 59 to 62 for two combinations of wake skew angles
Xg = Xy = 90° and Xg =XV = 600). As before, the span of the wings is half the width
of the tunnel, and the apex of the wing lifting line is centered in the tunnel. Only the fac-
tors yielding the velocities and their gradients in the X-direction are presented. The con-
figurations compared have either 0° or 45° of sweep and a yaw angle of either 0° or 450.
In all cases, the distribution shown is along the lifting line of the wing.

These figures indicate substantial differences in the gradient interference over the
span. Conversion of these interference velocities into their effect on the span loading
would result in corrections to both pitching and rolling moments. Observe that the gradi-
ents in the X-direction are often thought of as an effective camber, but that for the 45°
swept wing with 45° of yaw the effect on one half of the wing is more nearly of the nature
of an altered dihedral angle since that side of the wing lies along the X-axis.

Even though the effects of interference distributions such as these can be large, it is
somewhat difficult to envision complete corrections being made in a routine fashion. Even
though reasonably complete treatments of spanwise loading are available for wings, it
would appear that the required expenditure of effort and computer time would be excessive.
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It might be considerably more effective to examine the interferences prior to test and to
choose a model size such as to minimize the corrections to the point where cruder approx-
imations to the actual corrections may suffice. Such a pre-examination will most likely
indicate that models intended for lateral-directional stability testing should be somewhat
smaller than models intended solely for symmetrical tests (such as performance or longi-
tudinal stability).

CONCLUDING REMARKS

A theory has been presented which predicts the interference velocities caused by the
walls of a wind tunnel as well as the gradients of these interference velocities over the
principal axes of the tunnel. The theory allows for large wake deflections in both the lat-
eral and vertical directions. It includes available V/STOL interference theory, where the
wake is deflected only in the vertical direction, and conventional interference theory, where
the wake is completely undeflected, as special cases. Various symmetry and interchange
relationships are developed which by themselves, provide significant restraints on the
interferences, and a large number of numerical results typifying the behavior of the inter-
ference factors have been presented. The equivalent results for ground effect appear as
a degenerate case of wall interference.

Although the application of this interference study to the correction of data has been
discussed in general terms, its immediate application depends upon the availability of ade-
quate theoretical aerodynamic treatments of the effects of a nonuniform flow field on the
model. Even for conventional configurations, where numerical vortex-lattice theory could,
in principle, be used, such corrections may possibly be uneconomically time consuming.
For more unconventional aircraft, adequate theoretical treatments often do not exist and
rigorous corrections are not possible.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., April 6, 1971.
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APPENDIX A

PARTIAL DERIVATIVES OF

=1

Let

and
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General Case
From equation (29b) and the above definitions, % is
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From equation (Al.1), the partial derivatives of the first order are
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From equations (A1.2) to (A1.4), the partial derivatives of the second order are
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APPENDIX A — Continued
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APPENDIX A — Continued

Special Case of Xy = 90°
Setting Xy = 90° in equations (A1.1) to (A1.20) yields

=1
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The partial derivatives of the first order are

o) €3
o) RO

60

(A1.17)

(A1.18)

(A1.19)

(A1.20)

(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)



APPENDIX A ~ Continued
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APPENDIX A — Continued

o) _EReR’
o) Ealtw
o) o) motL¥O
) Ry

AE) ER)stE)
) o) molrot
I 313337

DEE o

Special Case of Xy = 90°

Setting Xy = 90° in equations (A1.1) to (A1.20) yields
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The partial derivatives of the first order are
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APPENDIX A - Concluded

The partial derivatives of the second and third orders are as given in equations (A2.5) to

(A2.20).

Special Case of Xy = Xy = 90°

Setting Xy = Xy = 90° in equation (Al.1) yields

(A4.1)

(A4.2)

(A4.3)

(A4.4)

The partial derivatives of the second and third order are as given in equations (A2.5) to

(A2.20).
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APPENDIX B

PARTIAL DERIVATIVES OF %

In this appendix, the equation numbers are chosen to correspond with appendix A.
General Case

4
From equation (40), % is

, .
%_ = ROCHV - (C %) sin XH sin Xy - (C yﬁ-) sin Xy COS Xy + <§ -IZ:I-) sin Xy €08 Xy

(B1.1)

so that
A') y
a2 §C —}c
h/ _ H/“HV .
" _) ““Rg sin Xy €OS Xy (B1.2)
Special Case of Xy = 900
. 4
%. =Rp - <€ -ﬁ—) sin Xy - <§ %—) COS Xp (B2.1)
so that
h/_\ H/_
a(z) Ro % XH (B2.2)
h

t
All other values of the partial derivatives of AT are identical with those in

appendix A,
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APPENDIX C

INTERFERENCES AND INTERFERENCE DERIVATIVES AT THE
CENTER OF THE LIFTING SYSTEM IN GROUND EFFECT

Notation

Because of the length of many of the expressions derived herein, the following abbre-
viations are used both in this appendix and in table I:

Cy = €08 Xy sy = sin XH

Cy = CO0S Xy Sy = sin Xy

CHV = \/1 - coszxH coszxV

Method of Derivation

The interference factors for the velocities are obtained by a straightforward substi-
tution of ®;j and ‘I’i,j into equation (65). Similarly, the interference factors for the
derivatives of the velocities are obtained from equation (67). The values of A and A'
and the derivatives thereof are given in table I. Substantial manipulation of the trigono-
metric terms is required to obtain the final results.

The symmetries discussed earlier (egs. (70), (71), and (72)) are of substantial value.
One velocity interference factor and 12 interference factors for the gradients are obtained
directly from the remaining factors.

The expressions presented herein are valid only for Xy =909, Simpler expres-
sions for Xy > 90° may be derived from equations (68) and (69) in the main text.

Interference Factors for Velocities Caused

by Forces in the X-Direction

Ox,x.-
6, 4 4.4 o. 2 2 2
o . 138V SmwCv  2%g °H Sy 4Cay - sy)
X,X m C 4 2C 2 2 C
HV Sy “HV Sy HV
2. 2 ) 2 -« 34
L sn"sy (CHV sy) 10 Cgv - ®g Sy (C1a)

65



APPENDIX C - Continued
When XH is 90°

_1 2 2. 2.1 %v
GX,X =7 (4:SVCV - 3SV CV +-2-1TV> (Clb)

Equation (Clb) is identical, except for notation, with the equivalent expression given
as equation (A16) of reference 5.

When Xy is 90°
-._H (Cic)

When x;; and Xy are 90°

Ox,x =0 (C1d)
Ox,y-"
Se:Crr| 38,:2C, 28,2 45,2, 25,2 S..2¢,,2 28404
5. - CH'H|SH °V Sv_ HVV_HV+I£IV2
X,y m 4
’ Cav cav’(Cav+sy) Cuv® Sv Cav
C + S.,C
_1~av* % (C2a)
2 Cyy - sHCV

O,y = 0 (C2b)
When Xy 1is 900
S17C
_SHH
5x,y o (C2¢)
Gx,z -
3 3 3, 3 3. 3
_ SH 3sH SyCy 4sH Cy SH Cy 1 Sy
O,y =7 i 3 27 2Coy - sre (C3a)
Chv Cav®  svCav HV - SHCV -
When xp is 90°
_1 3_ 4. 3 _1,0Xv
6x,y =z éSVCV dey” - SyCy " 5 tan 3 (C3b)

which is identical, except for notation, with the equivalent expression given as equa-
tion (A12) of reference 5.
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APPENDIX C - Continued
When Xy is 90°
S
5,z = - 5o (C3c)

When both Xg and Xy are 90°

Ox,z = ~ 5= (C34d)

Interference F"actors for Velocities Caused by Forces
in the Y-Direction

by x-~ See equations (C2).

Oy,y-~
4., 2 2¢ 24 260 2 4. 2 2~ 2, 2
5 1 SH Cv i ZsH sy“cgcy i 4sH Cy +4sH Cy Cy
Yoy T w 4 4 3 2
’ Crv Chv Chv (CHV + SV) Chv
2. 2 4. 2 2. 2. 2
CHV Sy CH Sy Cv ZsH CH Cy
- + 5+ 5 5" 5 (C4a)
2(CHV'SHCV> Z(CHV-SHCV> Sy CHV Sy
When Xy 18 90°
1+ 2C
__1 - - 127"V
Oy .y = TI|ESV 3) (SV 1) *3 - J (C4b)
V.
When xy is 900
2
s
_ H
Oy,y == 5 (Cée)
When both xy and x are 90°
-1
GY)Y T (C4d)
Oy, 2+~
3 3 3.3 3. 3
5 _ cy 3sH SyCy ) 4SH Cy . Sty 1 Sy (C5a)
Y,z ~ T 2C -syC
’ Cpv?t Cuv®  syChxy? HV ™ SHCV
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APPENDIX C — Continued

When xy is 900

dy,z =0 (C5b)
When xy is 90°
c
_H
GY,Z = ﬁ (C 5C)
Interference Factors for Velocities Caused by
Forces in the Z-Direction
0z,x-~
3 3 3..3
_SH[®H °v°v" _SH °v 1 Sy
“2x= T\ T 1 5.c. 2 2Chy-spey (C6a)
HV SV~HV
When xp; is 900
1 3 1. Xy
Oy x =7 ésvcv +syCy +3 tan -2—> (C6b)

Equation (C6b) is identical, except for notation, with the equivalent expression given as
equation (A8) of reference 5.

When Xy is 90°

S
5. . =-H (C6e)

When both xy; and xy are 90°

1
L (C6d)
6Z:Y'-
3 3 3c..3 .
s o Ssp’syey®  sgiey .1 Sy > (Ca)
Z,Yy 1 4 2 2Cyxy-sycC
CHV SVCHV HV ™ °"H“V
When xg is 90°
8z, = 0 (Cb)
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APPENDIX C - Continued

CH
52,y =~ 31 (CTe)
b,z
4, 4
_ 1% % 1
5Z,Z = - T C + ) (C83.)
HV
When xp is 90°
__1 1
6Z,Z = - 1—,‘; <3cv4 + §> (C8b)

Equation (C8b) is identical, except for notation, with the equivalent expression given as
equation (A4) of reference 5.

When xy is 90°
5 -_ 1 (C8c)
Z,Z 2,”

When both Xy and Xy are 900

bs,7 = - 2_17 (C84d)

Interference Factors for the Derivatives of the Velocities

Caused by Forces in the X-Direction

6x,x,zc'
3 3(c_ 2 g 25 2 5. 3. 3
I (R : i VVV(HV Sy SV>_4SH sy Cy
X,X,X 11 6 C 6
Cav HV
3 9_ . 2. 2 5. 3
) }2iH v (CHV Sy°s ) +85 ey’ 3svbpy
5 3
Cav Cav'  4Cav-sucy)
2.3 3¢..3 2._ z)
. SHSY e ' (CHV Sy Sy
5 v
2 @HV' Sy V) syCav
3. 3 2_ . 2. 2 5. 3
3SH Cy (CHV 7SH sv) dspev (C9a)
3
v Cuv? Sy
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APPENDIX C - Continued

When Xg is 90°
5 —1‘10 5 - Tsyc.3 5 3.1V Xy Cob
x,x,x = 7 |108ycy® - Tsyeyd - 12¢y +8cy; -Z'.’l-l-_cvtanT (C9b)
; o
When Xy is 90
s
=. 827 2.1
Gx,x,x" 51 éH +2> (C9c)
When both Xy and Xy are 90°
5 =1 (C9d)
X,X,X I7

Ox, X,y

. 2 3( 2 2, 2
_ CH|28g"SyC%y (CHV oSy Sy >_ ‘sp ¢y Cuv - 3m"Sy’)
XX,y ~ m CHV6 CHV5
5. 3 25 3
. 8sH s SVCHV SH Sv

3 B 7+ ; 3
Chv 4<CHV sCy) ZGHV SHCV)

3¢..3 2_3. 2 z) 3..3 2_o 25 2
ooy Con®- 3wy syley® (Cgry? - %y

7 \-
syCav sy3Chy?
25, 9%¢c,3 4s 5¢ 3
._H Vz" H3V (C10a)
SyCav Sy
When Xy is 90°
Ox,x,y =0 (C10Db)
When Xy is 90°
_ cH/1_ _ 2
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APPENDIX C ~ Continued

Ox,x,2."
4, 4 4 4( 2. 2 _ 2> 6. 4
5 1 2sH Cy f 2. 2 9 4sH Cy 3sH Sy CHV 8sH Cy
X, X, 72 = S |98¢" S -C “\ - -
mETT o 6 UHTV O THV ) CorisB(Crrer + 8 C..id
HV HV ( HV V) HV
4 4( 2_ o 2 2) 4 4( 2 o 2. 2
P s Sha s 4CHV Sy 2SV ,SH v Cuv” - % sy’)
Cav <CHV + sy) sy*Cpy*
2 4.3 6o 4
) CH CHV Sy Cy i ZsH Cy (C11a)

2(CHV - SHCV) 8y 2Cpy>
When XH is 90°

2
-1 6 5 4 3 2 PR i i
Ox,x,2 = 7 éOsV - IZSV - 19sy° + 245y + 95y 12sy; 1+ S (C11b)

When xy is 90°
2
C
H
Ox,x,2 = 5~ (Cllc)

When both x;; and Xy are 90°

0x,x,z = 0 (C11d)

5x,y,x-‘ See equations (C10).

O%,y,y*"
_sy 2SH3SVCV3(SH2 - 4sV2cH2> ] 4sH3cV3 (sﬂz - ZSVZCH2>
XL,y om0 6 5
Chav . Cav
3c.3(5..2 2c..2 3¢. 2¢.3 3.2, 3
. ?_H. CVA (SH 2sV cH > . 8SH ,CH CV ) ZSH CH Cy
4 3 2
syCrv Chav syCuv
5. 3 3. 2. 3 3. 2
Sty 4sH cy-Cy SVCHV Sy cy
+ s - 3 " s 5| (C12a)
Sy"Crv Sy Cav - SuCvy) ( HV " SHCV)
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APPENDIX C - Continued
When Xy is 90°

_1 3 3 3 1 Xy
When xy is 90°

__5SH 2
6,9,y = - oo (1 - 2ey ) (C12c)

When both Xg and Xy are 90°

_ 1
O%,y,y =~ 25 (C12d)
Gx’y,z'-
4, 4 2 4, 4 4. 4 4. 4
o _suen|l08gTcyTsy” Bsyicysy 3sgiey”  2spiey
X,y,2 " " " f 6 5 4 °%. 2
e Cav Cav Cav®  sy“Cay
4. 2 4 4.2 4 4. 4
4sH sy“ty ) 4SH sy cy ) 8sH Cy

) B 4 2 3
av’(Cav*5v) Cav'Cav*sv)? Cay Cav * sv)

2
S
- v > (C13a)
2<CHV - SHCV>
When xp is 90°
Sx,y,2 = 0 (C13b)
When Xy is 90°
_ SHCH
O%,y,2 = a7 (C13c)
6x,z,x-~ See equations (C11).
5x,z,y" See equations (C13).
5x,z,z"
3 3(5. 2 - 452 2) ( 2_ 9y 2 2)
5 _ sy |25g°SyCy (sv dsyicy ) 4sH3cV3 sy“ - 28y cy’
X,2,2 ~ T C... 6 Correrd B
HV HV
3 3 5.5 3
. spisyey® 2sy %y . sgocy L1 sy (C14a)
4 4 2 2¢C - syc
CHV SVCHV SVCHV HV - SH*V
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APPENDIX C — Continued

When Xy is 900

Ox,2,2 = %(120\,-5 - 1OSVCV5 - 4CV3 + 5SVCV3 +8yCy + -12- tan XTV> (C14b)
When Xy is 90°

Ox,2,7 = oo (Cl4c)
When both xg and Xy are 90°

Ox,2,2 = 2—2 (C14d)

Interference Factors for the Derivatives of the Velocities
Caused by Forces in the Y-Direction

Oy ,x,X-~ See equations (C10).
5y,x,y°" See equations (C10).
by,x,z-~ See equations (C13).

by,y,x-- See equations (C12).

——

5Y}Y:Y°-
202 _ 2 5 3c..2 5
5 _ C_H 2sH SyCy <2sV Cyq 3sH> N lst Cy i 8sH cgecy 3SH Cy
Y,y,y m 6 5
o Cav Cav Cav SyCrv
5, 3 3¢ 20 3 3
3sH Cy . 4sH Cg“Cy L3 syChv i Sy°CH (C15a)
30,2 3 Z ) 3 :
sv"Cav Sy Cav SHOV) 2(CHV SHCv)
When xp is 90°
5 =
v,y - © (C15b)
When xy is 90°
c
_SHf 2,1
GY:y,y Toan (SH + 2) (C15C)
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APPENDIX C — Continued

Oy,y,2""
- 4 2. 4
5 1 25H4cv4(4sV20H2 SH2> _ 8sy “sycycy . 4sH6cV4
Y, ¥y.z " 7 6 . 5 5
Cuv Cuv Cuv®(Cav + sv)
6 4 4. 2. 4 4. 2, 4 6c 4
. 4SH v 8sH cgcy N ZSH CH“Cy i Sy Cy
4 2 3 4 2 4
Cav (CHV ¥ SV) Cav (CHV ¥ SV) Cav Sy“Cav
2. 4 2¢0..2
+ZSH H V Cay | Sy“cq (C162)
2 Crv - 2(Chv - sgev)2
sy2Crv? T HV SHCV> (Cav - su v)
When Xy is 90°
_1 2 3 4 1 1
oy,9,2 = & <8 - 128y + 35, % ds® - 2t - Lo CV> (C16b)
- anO
When Xy 1is 90
2
_5SH
Gy,y,z - 2T (CIGC)
When both XH and Xy are 90°
5 =L (C16d)
Ys¥:2 21
5y,z,x°' See equations (C13).

by,z,y-- See equations (C16).

6y’zyz°-

e 9 3 3( 2. 2. z) 3 3
5 cy |25g3syCy (4?HZCV2 SV> _AsgTey”\Bsyley” - syf)  spisycy®

V,Z,Z 11 6 5 4

7 Cav Chv Chv

25..9¢,0 Sy 3¢.,3
S

) v HCV _ v (C172)

1
= +
2 Chxy - sgey chHV4 VCHVZ
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APPENDIX C —~ Continued

. (o]
When Xy is 90
Oy,z,2 = 0 (C17b)

When Xy is 90°

°H
ay,z,z = =- '2? (C17C)

Interference Factors for the Derivatives of the Velocities

Caused by Forces in the Z-Direction

Z,X,X*"
6. 2. 4 4. 4f= _ 2) 4 4( : 2)
5 xx——l-losH Sy Cy _SH cv<5 3cH _SH Cy 1 ZCH
Z,X%,X T 6 4 ' 2 2
Chv Chv Sy“Chy
C S 28,2
- 575 HV + “H "V - (C18a)
- syc -
(Cuv - =H v) 2(cHV chV>
When xp is 90°
_1 6 _ 4_..2_1_1
5 %.x = & <100V seyt - ey - 31 CV) (C18b)
When xy is 90°
2
CH
6Z,X,x T (C18c)
When both XH and Xy are 90°
oz,%x,x = 0 (C184d)
Oz,%,y°"
4. 2., 4 40 4 4 4
5 ) SHCH OSH Sy Cy 3sH Cy i ZSH cV +_1_ CHV + Sty (C19a)
Z,X -
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APPENDIX C — Continued

When xy is 900

0z x,y =0 (C19b)
When Xy is 90°
SHCH -
Oz,%,y = - o (C19¢c)
Gz,x,z"‘
3 35 2 _ 4q 2 2) :
_sH 28°syCy (SV dsyley . ZSH5cV5 i 2sH5cV3 (C208)
%2 W CyyyrS k 50, Crrer? S1,Cryr2 2
HV V'HV V"HV
3 3
_SHSvevT % Sy
4 Ciyv - StCy
Cyav HV ~ SHCV
When xy is 900
o] =1 0S+,C1,O + S¢,Cx/S + S,C +—1-tan2(1 (C20b)
z,X,2 T vV Vv V'V " 9 2
When xy, is 900
SH
O x,2 =~ 35 (C20c)
When both Xg and Xy are 90°
_ 1
O2,%,2 =~ 37 (C20d)
bz,y,x-~ See equations (C19).
02,5,y
4. 4 2. 2_4 2 4, 2. 4 6. 4 4. 2. 4
5 1 2sI_I Cy <4$V CH SH) i ZSH cycy . Sy Cy i 2SH CH“cy
2,5,y T 7w 2 4 2 2
Chv Chv sy"Crv.  Sy“Cpy
C Se,2c. 2
- HV + V H (C21a)
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APPENDIX C — Continued

When Xg is 90°

1 4 2 1 1
Oz,y,y = - ?r'(ch +eys ot 1- 513 °V> (C21b)
When Xy is 900
6 _ SHZ (CZIC)
Z,Ysy ~ ~ 2m
When both Xy and xy are 90°
1
02,5,y =~ 37 (C21d)
6Z’Y:Z'-
3 3 2 5
_CH 2841 SyCy (4er cy o - SV) . SH SyCy ZSH cV4
Z,Y,2 T 4
e Chy® Chv syCav
3c..3
+ B CVZ T (C22a)
2 ~ 8C a
SVCHV CHv ~ SgCv
When xp is 900
Gz,y,z =0 (C22b)
When xy is 90°
c
-_H
6Z’y’z a 27 (szc)

6z,z,x-~ See equations (C20).

Gz’z’y.- See equations (C22).
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APPENDIX C — Concluded

When Xy is 900
_1 6 4 1
GZ,Z’Z - -7? <100V - 3CV + §>

When Xy is 90°

When both XH and Xy are 90°

1
6Z,Z,Z - 2T
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APPENDIX D

FARTRAN PROGRAM TO CALCULATE THE INTERFERENCE FACTORS FOR STABILITY

TESTS OF A VANISHINGLY SMALL MODEL IN A CLOSED RECTANGULAR TEST SECTION

THIS PROGRAM WAS WRITTEN IN CDC FORTRAN, VERSION 2.1, TO RUN CN CCC 6000
SERIES COMPUTFRS WITH THE SCOPE 3.0 OPERATING SYSTEM AND LIBRARY TAPE. MINOR
MODIFTICATIONS MAY BF REQUIRED PRIOR TC USE IN OTHER COMPUTERS. THIS PRCGRAM
HAS BFFN FOUND TO BE SATIHSFACTORY ON THE AFOREMENTIONED COMPUTERS WHICH CARRY
THE FOUIVALFNT OF APPROXIMATELY 15 DECIMAL DIGITS. COMPUTERS OF LESSER PRE-
CISION MAY REQUIRE MODIFILCATEON TO DOUBLE PRECISION IN ORDER TO OBTAIN RESULTS
OF FQUAL ACCURACY.

INPUT IS REQUIRED AT LINE (D77) AND EITHER LINE (D 89) DR (D S2). THE
FIRST CARD MUST STATE, TN NAMELIST FCRMAT, THE HORIZONTAL (CHIH) AND VERTICAL
(CHIV) SKFW ANGLES FOR WHICH ThE INTERFERENCE FACTORS ARE REQUIRED. AS MANY AS
11 HORIZONTAL AND 10 VERTICAL SKEW ANGLES MAY BE SUPPLIED. AND THE OUTFUT WILL
RE FOR ALl VFRTICAL SKEW ANGLES AT EACH HORIZONTAL SKEW ANGLE. THE SECCNC CARD
SPFCIFIFS (IN AN A FORMAT) THE OESIRED BOUNDARY CONDITION ANO THE DESIRED
COMBINATION OF INTERFERENCE FACTORS, THAT [IS: STARTING IN COtUMN 1. THIS CARD
WILL RFAD FITHER CiOSED TUNNEL CASE, OR GROUND EFFECT CASE: AND STARTING IN
COLUMN 25, THF CARD WILL READ EITHER VFLOCITEIES ONLY., VELOCITIES AND LCNGITUDIN-
AL DFRIVATIVFS ONLYs OR VELOCITIES AND DERIVATIVES. THE THIRD CARD SPECIFIES
IXTRA. 7FTA. ETA, GAMMA, XOVERH, YOVERH, AND ZOVERH IN FORMAT NO. 80 (LINE
(0 251)). IXTRA IS DFFINED IN A SUBSEQUENT LIST OF STATUS INDICATORS. TFE
REMAINING QUANTITIES ARE MERELY THE SPELLED OUT VERSIONS OF QUANTITIES DEFINED
IN THF MAIN TEXT. AS MANY SUCH CARDS AS DESTRED MAY BFE INSERTED AT THIS POINT
PROVINFD THAT THF PRFVIOUSLY SUPPLIED QUANTITIES ARE UNALTERED. A SET OF SAMPLE
DATA CARDS FOLLOWS THE PROGRAM LISTING.

PROGRAM STABIL (INPUT,0UTPUT, TAPES=INPUT.TAPE6=0UTPUT) (D 1)
C {0 2)
C {0 3}
C THIS PROGRAM COMPUTES INTERFERENCE FACTORS FOR STABILITY WORK (D 4)
C AT A POINT NEAR A VANISHINGLY SMALL MODEL (D 5)
C (D 6}
C (D7
C ***DEFINITICNS OF STATUS INDICATORS**x (D 8)
C {D 9)
C *VARTARL F¥x *STATUS* *DEFINITION® (D 10)
C (0D 11)
9 IHVI0 1 NEITHER CHI(H) NOR CHI(V) SET TO 90 DEG BEFORE (D 12}
C SUBSTITUTION (D 13}
C ? EITHER CHI(H) QR CHI(V) SET TO 90 DEG BEFORE SuB- (D 14)
C STITUTION {D 15}
C (D 16)
C ICHTH 1 CHE{H) NOT SET TG 90 DEG BEFORE SUBSTITUTION {D 17)
C ? CHI{H)} SET TGO 90 DEG BEFORE SUBSTITUTION (D 18)
C {D 19)
C ICHIV 1 CHI(V) NOT SET TO 90 DEG BEFORE SUBSTITUTION (D 20}
C ? CHItV) SET TO 90 DEG BEFORE SUBSTITUTION (D 21)
C (D 22}
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DDA AN AANNNAYMOONNANSAN

AHPRTIM 1.0
-1.0

THI0 1
2

1v30 1
2

TROTH 1
2

TCASF 1
2

ITYPF 1
2

IXTRA 1
2

3

1CH 1
2

Icv 1
2

APPENDIX D — Continued

PHI TO BE EVALUATED
PHI PRIME TO BE EVALUATED

CHE{H) NOT EQUAL TO 90 DEG
CHI{H) EQUAL TO 90 DEG

CHI(V) NOT EQUAL TO 90 DEG
CHI(V) EQUAL TO 90 DEG

EITHER CHI(H) OR CHI(V) NOT EQUAL TO 90 DEG
ROTH CHI(H) AND CHI(V) EQUAL TO 90 DEG

CASE 1 EQUATIGCNS TO BE USED
CASF II EQUATICNS TO BE USED

CLOSED TUNNEL
GROUND EFFECT

ADD EXTRA CHI(V) DIVIDING CASES I AND 11

OMITS EXTRA CHI(V)
ALTER ANGLES, BOUNDARY CONDITIONS. OR REQUIRED

INTERFERENCE FACTORS

CHI(H) NOT GREATER THAN 90 DEG OR ITYPE EQUALS 2
CHI(H) GREATER THAN 90 DEG AND ITYPE EQUALS 1

CHI(V) NOT GREATER THAN 90 DEG
CHI(V) GREATER THAN 90 DEG

COMMON RSUBOs AOVERHCHV(2) ySINXH(2).COSXH{2),

1 SINXVI2),
? COORNDI(3) .

COSXVI(2) ¢ IHVI0, ICHIH. ICHIV.
PHE{2) 9o [ o JoKyAhPRIM

COMMON XOVFRH.YOVERH, ZOVERHe ZETALETA«GAMMA . TANXH,

SR N IR

TANXVeIBOTHe THI0 s IVIO s ICASE«XSETLe XSET2,

XSET3,PI,IP(3),IQ(3),IR(3)«TERMI(2),TERM2(2),
TFRM3(?).
TERMB(2) .
ANSFRU2)+NDELTA(3,3)+DELTAD{3+3+3),FACTYP(6),ICV

TERM4(2),TERMS5{2) . TERM6(2) , TERMT(2),
TERMI(2) »TERML0(2)TERMLI1(2)o TERM12(2}.

DIMFNSION CHIH(11)+CHIV{11)+VHCLD{11)+RUNTYP{4),

-

PRTXYZ7(3).PTXYZ(9)

NDATA PRTXYZ/1HXe1lHY < 1HZ/ +GRNTST,FACTST/6HGROUND,6H /s
1 PTXYZ/4HX e X) 0 4HX oY) 94HX9Z) 9 4HY o X) 24HY Y ) o 4HYoZ) o
2 4H7 e X) 0aHZ oY) 0 4HIWZ)/

NAMFI IST /ANGLES/CHIH,CHIV

CHV(?2)=SINXV{2)=

SINXH(2)=1.0

COSXVI2 1=CNSXH(?2)=0.0
1IPCLIY=TP(3)=1I0L1)=TR(1)=2
IP{2)=1Q(2)=10{(3)=IR(2)=IR(3)=1
PI=3.14159265398979

RADVSN=PI/180.0
49 IFIRST=0
N 48 I=1.11

48 CHIH{I}Y=CHRIVII)=

RFAD (5 <ANGLES)

VHOI D([)=0.0

IF (FOF,5) 375.50

50 AHPRIM=1.0
IXTRA=?

THVI0=f CHIH=TCHIV=IHI0=IV30=ICH=ICvVv=1
NOHNR7=NOVERT=NOVSAV=0

23)
24)
25)
26)
21)
28}
29}
30)
31)
32)
33)
34)
35}
36)
37)
38)
39)
40)
41)
42)
43)
44}
45)
46)
47)
48)
43)
50}
51)
52)
53)
54)
55)
56)
57)
58)
59)
60)
61)
62)
63)
£4)
€5}
66}
67)
68)
69}
70)
7L)
72)
73)
74)
75)
16)
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51

90

101
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105
106
107

108
109

110
130

140
160

161
162

164
165

170

APPENDIX D — Continued

No 51 I=1.3

No 51 J=1.3

DELTA(L «J)=0.0

N0 51 K=1.3

DFLTADE TedoK)=0.0
IF(IFIRST.EQ.O0) GO TO 90

RFAD (5.,80) IXTRAGZETA+ETA,GAMMA.XOVERHsYOVERHZOVERH

IF (IXTRA.EQ.3) GO TO 49

IF(ENF.5) 375,109

READ (54100) RUNTYP,FACTYP,IXTRA.ZETALETA,
1 GAMMA . XOVERH, YOVERH¢ ZOVERH

IF (EOF+5) 375,101

IFIRST=1

DO 105 M=1,11

VHOLD(M)=CHIVIM)
IF(RUNTYP(1)-GRNTST)108,107,108
ITYPE=?

2FTA=1.

FTA=1.

GAMMA=?,

GO TO 109

ITYPF=1

A7FTA=ZIFTA

AFTA=ETA

D0 110 M=1,10

TF(CHIH(M)) 130,130,110
NOHORZ=NOHORZ +1

NO 140 M=1,10
IF(CHIVIM))I16041604140
NOVERT=NOVERT+1

NOVSAV=NOVERT

DO 365 TANGLH=1,NOHORZ
ACHIH=CHIHUTANGLH)

NOVFRT=NOVSAV .

IF (ITYPE.EQ.?2) GO VO 161

WRITF (6+903) GAMMA.AZETA,AETA,XOVERH,YOVERH.ZOVERH
G0 TN 162

WRITF (6+904) XOVERH.YOVERH,ZOVERH
ICH=1

IF (CHEHUTANGLH) cLE.90..0R.ITYPE.ED.2) GO TO 164
{CH=?

FTA=? .,0-AFTA

CHIH{ TANGLH)=180.0-ACHIH
YOVFRH=-YOVERH

na 165 M=1,11

CHIVIM)=VHOLD(M)

TF (CHTH{TANGLH}.E0.90.0) GO TG 220
STNXHUL )=SINCCHTH{ TANGLH) *RADVSN)}
COSXH{1 )=COS(CHIH{TANGLH)}*RADVSN)
TANXH=S INXH{1)/COSXH(1}

IH90=1

IF (ITYPF.FO0.2.0R.IXTRA.EQ.2} GO TO 230

FIND AND INSERT THE VERTICAL SKEW ANGLE FOR WHICH THFE
WAKF GNFS DIRECTLY TO THE CORNER OF THE WIND TUNNEL
(SHARED BY CASES I AND II)

VMIND=ATAN(TANXH*ZETA®GAMMA*{2,0-ETA) ) /RADVSN
N0 185 M=1.NOMERT _
TF (ABSIVMID-CHIV(M)).LT.0.005) GO TO 230
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185

190

200

210

220

230

241

240

?50

260
270

279
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CONTINUF

NO 190 M=1.NOVFRT

IF {(VMIN.LT.CHIVIM)) GO TO 200
CONTINUE

CHIVINOVFRT+1)=VMID

GO 70 215

MOVI OC=NOVERT+1

MOVE=MOVLOAC-M

NnaO 210 M=1.MOVF
CHIVIMOVLOC)I=CHIV{MOVLOC-1)
MOVLOC=MCVLOC-1

CHIVIMOVI OC)=VMID

NOVFRT=NOVSAV+1

G0 Ta 230

SINXH{1)=1.0

COSXH{1)=0.0

TANXH=10.0E10

CHV{1)=1.0

THI0=?

N0 364 TANGLV=1+NOVERT

Icv=1

IF (CHYVIIANGLV).EQ.90.0) GO TC 240
IF {CHYVITANGLV).LT.90.0) GO TC 241
cv=2

IF tITYPE.EQ.?) GO TO 241
7FTA=AZIFTA/(2.0%AZETA-1.0)
TOVERH=-70VERH
CHIVIIANGLV)=180.0-CHIV{IANGLV)
SINXV{1)=SIN{CHIV{IANGLV)#*RADVSN]}
COSXV{1)=COSCCHIV{TANGLV)*RADVSN)
TANXV=STNXV{1)/COSXV(1l)
CHVITI=SORT{ (1.0~ (COSXH(1)**2)*%(COSXV(1)*%2))))
1vVa0=1

1ROTH=1

TF(TANXH.GE.TANXV/ (ZETAXGAMMA*(2.0~-ETA)})GO TO 260
GO TN 250

SINXV(1)=1.0

COSXVI11=0.0

TANXV=10.0F10

CHVIW)=1.0

Ive0=?

IBOTH=2

TF{TH90.NE.?) TIBOTH=1]

ICASF=?

G0 TOH 270

1CASF=1

XSFTI=7FTA®XOVERH

XSFT2=XSFT1-TANXV

XSFT3=7FTA*X{ XOVERH-GAMMA*{2.0-ETA} *TANXH)

COORDINATE PERMUTATION LOGPS

N0 310 I=1.3

Do 310 J=1,3

N 310 K=1.3

TF (ABS(CHTIVITANGLVM)).LT.0.005) GO TO 364

IF (K.FQ.1.0R.ITYPE.EQ.2) GO TO 279

IF (FACTYP{4).EQ.FACTST) GO TQ 310

TF (J.NF.1.AND.FACTYP(6) .NELFACTST) GO TO 310
D0 280 TTFRM=1.24
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280
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300
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2092
3000

2094
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362

361
364

365

375

100
330
340
3150
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903
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TFRML{ITFRM}=0.0

GO TO (290+300).ITYPE

CALL WAL FFF

GO TO 310

CAl L GRNFFF

CONTINUF

IF(ICH.EQ.1) GO TO 3000

N0 2092 I=1.3

NN 2092 J=le.3

IX=1ty=2

IF (T1.FQ.?) IX=1

IF (J.FQ.?2) [Y=1

DELTALT o S)=({~=1 )% I X+1Y) V*DELTA(L+J)

na 2092 K=1.3

17=2

IF (K.FQ.2) 1Z=1

DELTADC FedeK)=€(-1a ) ek (IX+IY+IZ)VSDELTADI I+ JoK])

IF (ICV.F0.1.0R.ITYPEL.EQ.2) GO TG 3001

NO 2094 I=1.3

Nna 2094 J=1.,3

IX=1vY=2

IF (1.FQa3) IX=1

IF (J.EQ.3) 1v=1

DEt TA(T )= (-1 )% IX¢]Y) )*DELTALT+J)

NO 2094 K=1,3

17=2

IF (KaF0.3) 1Z=1 .
NDFITAD{ TedeK)={ (-1 ) *&(IX+IY+1Z))EDELTAD(I+JuK)
CHIVITANGI V)=180.0-CHIV(IANGLV)

7OVFRH=—70VERH

TETA=AZFETA

WRITF (64330) ACHIH,CHIV{IANGLV)

WRITF (60340) PTXYZ

WRITF (64350) ((DELTA{I¢J)eJ=1e3)el=1.3)

IF (FACTVP(6) . NE.FACTST.AND.ITYPE.EO.1) GO TO 361
IF [FACTYP(4).EQ.FACTST.AND.ITYPE.EQ.1) GO TO 364
DO 362 J=1,3

WRITF (66370) PRTXYZ(J)o( (DELTAD(TeJeK)eK=143)eI=1,3)
GO T0O 364

WRITE (64370) PRTYXYZ(L)s((DELTAD(IoleKIeK=193)sI=1¢3)
CONTINUF

IF (ICH.FO.1) GO TO 365

CHIH{TANGLH)=ACHIH

FTA=AETA

YOVFRH=-YOVERH

CONTINUF

GO TO 50

sTop

FORMAT (11,F9.3,5F10.3)

FORMAT (10A6/114F9.3,5F10.3)

FORMAT(//14Xe9HCHI(H) = yF64295XsIHCHIIV) = oF6.2/)
FORMATI{19X.9({1H{sA4+8X)}
FORMAT(1Xo10HDELTAL-4—)}s9F13.4)

FORMAT (11H DFLTA(—e—yssAlslH)}sFll.4s8F13.4)

FORMAT (1HL// 3SX*INTERFERENCE FACTORS FOR STABILITY WORK IN A CLC

1SFD TUNNFL%//43X*AT A PCINT NEAR A VANISHINGLY SMALL MODEL*///
73S X¥GAMMA =¥F7.3,10X*ZETA =%F6.3+11X*ETA =%F6.3//
335X*¥X/H =¥FTo3410X*¥Y/H <=%F6.3+11X*%72/H =*F6.3/)

FORMAT (1H1///739X* INTERFERENCE FACTORS FOR STABILITY WORK IN GROUN

10 FFFECT®//4TX*AT A POINT NEAR A VANISHINGLY SMALL MODEL*///
260X%®X/H =%F7.3¢10X*Y/H =%F €434 10X*¥Z/H =*¥F6.3/)

FND
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100

110

120

125

130

140

150

160
200

210

715 ANSFROTTERM)={~-2.0/PI}*{TERML(ITERM) ¢
1 ((-1.0)0%x{ IP(I)+IQUII+IR(KI V) *(TERMZIITERM)

APPENDIX D — Continued

SURRLUTINF GRNEFF

COMMON RSURDGANDVFRHeCHV(2) 9 SINXHI2) e COSXHI2) o
SINXV{2)«COSXV(2) 5 IHVIO ¢ ICHIH.ICHIV,

1
2 COORD{AYePHI{2) sl s JsKsAHPRIM

COMMON XOVFRH. YOVFRH ZOVERH,ZETASETAGAMMA . TANXH,

° TANXV<IBOTHe THG0 s IVIO,ICASE«XSET1.XSFT2,
XSET3ePTIoIP{3),1Q(3),IR(3),TERML{2) TFRM2(2)
TERM3(?) ,TERM4(2) , TERMS(2) ., TERM6{2) s TERMT( 2},
TFRMB(2) . TERM9(2) s TERMLC(2) s TERMLL1(2),TERML?2(2),
ANSER{?)+DELTA(3,3)+DELTAD(343+43),FACTYP(6).ICV

IF {IV90.EQ.2.0R.ICV.EQ.2) GO TO 200

[€, I8 VIR NP

COORN{ L I=XOVERH-TANXYV .
COORNDIE? Y=YOVFERH+TANXV/TANXH
COORND{3 )=70OVERH+1.0
THV90=?

TCHIV=?

AHPRIM=1.0

TF(K.NF.1)GO TO 100
CALL PHITJ

CALL PHITUK

NO 110 ITERM=1,.2
TERMI{TTERM)=PHI(ITERM)
THV90=1

ICHIV=1

TF{K.NF.1)G0O TO 120
CALL PHITY

CALYL PHITJK

DO 125 ITERM=1.2
TFRMICTITERM)=TERMI (T TERM)-PHICITERMY)
AHPRIM=-1,0

ICHIV=?

THVI0=?

CONRD(?2 }=-CAORND(2)
COARN(3 I=—CO0ORD( 3)
1F{K.NF.1)G60 TO 130
CALY PHITJ

CALL PHITUK

ND 140 ITFRM=1,7
TFRMI(LTTFRMI=PHI(ITERM)
CHIV=1

THV90=1

IF(K.NFL1)GO TO 150
CAlLL PHTIJ

CAtL PHITJUK

NN 160 ITFRM=1.?
TFRM3(ITFRM)=TFRM3(ITERNM)}—PHI( ITERM)
AHPRIM=-1.0

THV30=1

ICHIV=1

CONRD{1 )=XOVFRH

COORD{? )=—YOVFRH
COORN(3)=-70VERH-7.0
TF(K.NF.1)GO TO 210
CALY PHITJ

CALl PHITJK
TERM2 U1 )=PHI(1}
TERM2 2 )=PHI{(?2?)

NO 215 1TFRM=1,2

2 +TERM3(ITERM) )}
IFIK.NE.1)GO TO 220
DELTA(T.J)=ANSFR{1)

220 DRLTAD(TedeK)I=ANSER(2)

RETURN
FND
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SURROUTINE WALEFF
RFAL KORD
NDIMFNSTON TFRM(1762),K0ORD(12,3) .

COMMON RSUBO«AOVERHCHV(2) ySINXH{2).COSXH(2) .
SINXVI2),COSXV(2) o THVIO » ICHIHLICHIV.
COORDE3)PHE(2) 5 1+J4KyAHPRIM

COMMON XOVERHe YOVERH s ZOVERHe ZETASETA,GAMMA, TANXH,

i TANXV. IBOTHe IH90, IV90,ICASE.XSET1« XSET2,
? XSET3.PI+TP{3),IQ(3)4IRI3VITERML(2) . TERM2(2),
3 TFRM3{?) 4 TFRM4(2) s TERM5{2) s TERM612) « TERMT( 2) ,
4 TERMB(?)+FFRM9{2), TERMI0(?)TFRM11(2),TFRM12(2),
5 ANSERE?)+DFLTA{3,3),DELTAD(3+,3,3),FACTYP(6)},ICV

FOUTVAI ENCE (TFRM{1,1),TERML{1)})

NDATA FACTST/6H /

PHT(1)=PHI(?)=0.0

THVSO = 1

ICHIY = 1

ICHIV = 1

AHPRIM=1.0

COORD (1) = XSET1

NO 130 M = 1,7

AM = M-4

DO 130 N = 1e7

AN = N~&

IF (M.FQ.N.AND.N.EQ.4) GO TO 130

COORD (2) =ZFTA®(YOVERH-4.0%ANEGAMMA)

CODRD {3) = ZETA* (ZOVERH-4.0%AN)

IF (K.NF.1) GO TO 100

CALL PHILJ

IF (FACTYP(4).EQ.FACTST) GO YO 110

CALL PHTTJIK

nn 120 10V = 1.2

TERM (1,IDV) = TERM {1,IDV) + PHI (IDV)

CONT INUE

SUMMATICN LOOPS AND COORDINATE SET-UPS
NO 1295 M = le7

AM = M - 4

DO 1295 N = 1e7

AN = N-4

YSFTL = ZETA*(YOVERH-4.0% AMEGAMMA)

YSFET? = ZFTA*{YOVERH+GAMMA*{2,.C~ETA-4.0%AM})

YSET3 = JETA®{YOVERH+2.0%¥GAMMA* (2 .0-ETA-2.0%AM))

7SFT1 = ZETA*(ZOVERH-4<.0%AN)

7SEY? = ZETA*®{(70VERH-4.0%AN)+GAMMA*(2,.0-ETA) *( TANXH/TANXV))
7SFVY3 = ZFTA*{{Z0VERH-4.0%AN)—CAMMA*(2.0-ETA)*{ TANXH/TANXV)})

& INITIALIZE TERM COQUNTER *
ITERM = 1
* SFT-UP COORDINATES *

IFIICASEL.EQ.2) GO TO 140

IXVSFY = 2

IXHSET =1

KORD & 2.1) = XSET2

KORD ( 242) = YSET1+TANXV/TANXH
KORD ( 243) = 7SFT1+1.0

KORD ( 3,1) = XSET3
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140

KORD { 3.2}
KORD ( 3,3)
KORN { 4.1)
KORD { 4.2)
KORD ( 4,3)
KORD { Se1)
KORD ( S542)
KORD ( S,3)
KORD { 6.1)
KNRND ( 642)
KORD ( 643)
KORD § 7.1}
KORD ( 7.2)
KORN { 7.3)
KORD ( 8,1)
KORD ( 8421
KORD { 8.3)
KORND { 9,1)
KORD ( 942}
KORD ( 9.3)
KORD (10.1)
KORD (10.2)
KORD (1043)
KORD (11.1)
KORD (1142}
KORD (11,3)
KORD (12,1}
KORD (12,2}
KORD (12.3)
GO TO 200

IXVSFT = 1

IXHSFT = 2
KORD ( 241)
KORD ( 2.7)
KORN ( 243)
KORD ( 341}
KORD ( 3,2)
KORD { 3.3)
KORND ( 4.1)
KORND ( 4.,2)
KORD { 4.3)
KORD € 5,1)
KORD ( S5¢2)
KORD { 5.43)
KORD ( 6.1)
KORD { 6621
KORD ( 6e3)
KORD ( 7,1)
KORD ( 7.2)
KORD ( 7.3)
KORD { 8.1)
KORND { B,21})
KORND ( 8,3)
KORD ( 9.1)
KORND { 942}
KORD ( 9,3)
KORD (10.1)
KORND (1062)
KORD (10e3)
KORD (11.1)
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APPENDIX D - Continued

YSEY2

ZSET1+1.0

XSET1

-YSET1

-ISET1-2.0

XSET2
-YSET1-TANXV/TANXH
-1SET1-1.0

XSET3

-YSETZ2

-75FT1-1.0

XSET1

YSET3

ZSET1

XSFT2
YSFT3-TANXV/TANXH
ISEF1+1.0

XSETF3

YSET2

215ET1+1.0

XSET1

-YSET3

-71SET1-2.0

XSET2
~YSET3+TANXV/TANXH
—-ISET1-1.0

XSET3

-YSET2

-7SET1-1.0

XSFT3
YSETF2
7SET?
XSFT2
YSET?
7SET1+1.0
XSET1
YSET3
ZSFET1
XSET3
YSET2
7SET?
XSFT?
YSET2
7SET1+1.0
XSFT1
-YSET1
-1SFT1-2.0
XSFT3
-YSET2
~ZISET3-2.0
XSET2
~YSET2
-ZSET1-1.0
XSFT1
~-YSET3
—ZISET1-2.0
XSFT3
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220
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370
330

340
350
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KORD (11,2) = —-YSET2
KORND (11+3) = -ZS5ET3-2.0
KORD (12.,1) = XSET2
KORD (12,2) = -YSET2
KORD (12,3) = -7SET1-1.0

* TERMS TWOe FIVE, EIGHT, AND ELEVEN *

ITFRM = ITFRM+1
IFCIBOTH.NE.2) GO TO 205
IF{ITFRM_EOQO.11) GO TO 1295
ITERM = ITERM+1

GO T0O 400

THV90 =

ICHIV = IXVSETY
TCHIH = IXHSET

CONRND (1) = KORD (ITERM,1)
COORND {?2) = KORD (ITERM.2)
Caar0 (33 = KORD (ITERM,3)

IF (K.NE.1) GO TO 210

CALL PHITYS

IF (FACTYP(4).EQ.FACTST) GO TC 220

CALL PHITJK

DO 230 1DV = 1.2

TFRM (TTERM.IDV) = TERM(ITERM,IDV}+PHI(IDV)
THV90 =1

ICHIV =1

ICHIH =1

IF (K.NE.1) GO TO 240

CALL PHITY

IF {(FACTYP(4).EQ.FACTST) GO TO 250

CALL PHTIUK

DO 260 1DV = 1.2

TFRM (ITFRM.I0V) = TERM (ITERM,IDV) - PHILIDV)

* TERMS THREE, SIXe NINE, AND TWELVE *

ITEFRM = TTERM + 1
[HV90 = 2
ICHIV = 2
ICHIH = 2

IF (ICASE.FQ.2) GO TO 300
TF {THS0.EQ.?2) GO TG 450

GO TO 30%

IF (IVI0.EQ.?) GO TO 450

COORN (1) = KORD {(ITERM,1)
COORD (2) = KORD ¢ITERM.2)
COORD (3) = KORD (ITERM,3)

IF {K.NE.1} GO TD 310

CALL PHITY

IF (FACTYP(4).EQ.FACTST) GO TO 320

CAlLL PHITJK

no 330 NV = 1.2

TERM (ITERM«IDV) = TERM (ITERM,IDV) + PHICIDV)
IF (ICASF.EQ.2) GO TO 340

TCHIH = 1
GO T 350
TCHIV = 1

IF (K.NE.1) GO TO 369
CAlLL PHITY
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360
370
380

400

405
410

420
430
440

450

1295
1300

1305

1310

—

1315

1320

APPENDIX D —~ Continued

IF (FACTYP(4).EQ.FACTST) GO TO 370

CALL PHTIJNK

NO 380 IDV = 1.2

TFRM (ITERM,IDV) = TERM (ITERM,IDV) - PHI (IDV)

* FXIT IF TERM NUMBER IS TWELVE ¥
fF (ITFRM.EQ.12) GO TO 1295

* TERMS FOUR. SEVEN, AND TEN *
ITERM = ITERM+1

TFIITFRM.EQ.4.O0R. ITERM.EQ.T) GO TO 405
AHPRIM = 1.0

GO T 410

AHPRIM = -1.0

THV90 = 1

ICHIV = 1

TCHIH = 1

COORD (1) = KORD {ITERM.1)
COORD (?2) = KORD {ITERM,2)
COORD (3) = KORD (ITERM,3)

IF (K«.NF.1) GO TO 420

CALL PHITY

IF (FACTYP{4).EQ.FACTST) GO TO 430

CALL PHITJK

NO 440 1DV = 1.2

TFRM (ITERML.IDV) = TERM (ITERM,IDV) + PHI (IDV)

GO 1O 200

IF (ITFRM.NE.12) GO TO 400

CONTIENUF

IF (ICASE.EQ.2) GO TO 1305

TPOWRYT = IP(I)+1QCEJ)+IRIK)

IPOWR? = IP(T)

GO TO 1310

TPOWRY = IP(I)

1POWR? = IP{TD+T00J)I+]IRIK)

PO 1315 1DV = 1.2

SADA=( =2 *¥7ETA**{ IDV+ L) *GAMMA/PI)

SANR=TERM{1. IDOVI+TERM(2y IDVI+TERM(3,IDV)+
{({(-1.)%% IPOWRL)*{TERM{44IDV)+TERMIS, IDVI+TERM(6,IDV))

SADGC={{-1.)%* TPOWR2I*(TERM{T+IDVI+TERM( 8, IDV)+TERM(I,IDV) )+
(=1 )%%{TO{J)+IRIK) })*{TERM{ 10 IDVI+TERMI{ 11, IDV)+
TERM{12,IDV)}

ANSFR{TNV)I=SADA*(SADB+SADE)

IF (K.NE.1) GO TO 1320

DELTA {T+J ) = ANSER (1}

DFLTAD (T«.JeK} = ANSER (2)

RETURN

FND

511)
512)
513)
514}
515)
516)
517)
518)
519)
520)
521)
522)
523)
524)
525)
526)
527)
528)
529}
530)
531)
532)
533)
534)
535)
536)
537)
538)
539)
540)
5411}
542)
543)
544)
5451}
546)
547)
548)
549)
550}
551)
552)
553)
£54)
555)
556)
557)
558)
559)
560)



100

200

100

200

300

400

500

600

700

800

APPENDIX D — Continued
SURRCUTINF PHII
COMMON RSUBO. AOVFRHGCHVI2) ¢ SINXF(2) 4 COSXHI2) o
1 STNXVE2) «COSXV(2) s IHVIO0s ICHIHL, ICHIV,.
? COORDI3V4PHEL2) 41 4 JoKsARPRIM -
RSURN=SQRT{COANRN{ 1) *%x2¢COCRD( 2 ) * %2 +COORDI 3) #%2)
AOVFRH=RSUBO*CHV{IHVIO)—COORC{ L) *S INXH{ICHIH) *SINXVIICHIV)+
1 AHPRIM®COORD( 2 )*«SINXV({ICHIV) #COSXH{ ICHIH}+
? COORD(3)*SINXH{ICHIH) *CCSXVUICHIV)
CAIL PARTLS(leT+04PTLLE)
TF{I.FOL.JIGO TO 100
CALL PARTLS(1.J.0.PTLLJ)
CALL PARTLS(3.1.8.PTL21J)
G0 0o 200
PTL1J=PTLLI
CAll PARTLS(?.1.0.PTL2LJ)
PHI(1)=PTL21J/AOVERH—PTLLI*PTL LJ/AOVERH®*2
RFETURN
END

SURRCUTINF PHTI UK

COMMON RSUBO.ADVERH,CHV(2) ¢ SINXH{2)«COSXHI2) W
1 SINXV(2)«COSXV(2) 9 [HVIO s ICHIH. ICHIV,
? COORN(3)«PHI(2)y1eJ9KyAHPRIM
IF(K.F0O.1)G0 TO 100
RSUBRO=SQRT(COORD( 1 )**2+CO0ORD( 2} **2+CO0RD(3)**2)
AOVERH=RSUBO*CHV{IHVI0)—COORD{ 1) *SINXHUICHIH)} *SINXV(ICHIV)+
1 AHPRIMXCOORD( 2 )*SINXVIICHIV)*COSXH{ ICHIH) +
2 COORD(II*SINXH(ICHIH)*CCSXVICHIV)
CALl PARTLS(1«1+.0.PTLLI)

IF(1.FQ.J)GO TO 200

CALl PARTLS{1.440.PTL1JY)

GO TN 300

PTL1J=PTL1I

CALL PARTLS{(2+10.PTL21IJ)

TFIT.EFQ.KIGO TO 600

GO 70 700

TF(I.FQ.K)GO TO 500

IF{J.FO.K)GN YO 400

CALL PARTLS{1eKeOePTL1K)

CALL PARTLS{3<J+KePTL2JK)

CALL PARTLS(3Il+KePTL2IK)

CAlLL PARTIS{3.1.4,.PTL23J)

CALl PARTLS (6+0¢04PTLIUK)

GO 10 800

PTLIK=PTL1J

CALL PARTLS(2¢J¢0.PTL2JK)

CALL PARTLS(3eleKePTL2IK])

PTI214=PTL 21K

CALL PARTLSIS«Jel«PTLIJK)

Ga T 800

PTIIK=PTL1I

Call PARTEIS(2.1.0,PTL2IK)

CALL PARTLS{3+JeKePTL2JK)

PTL2TJ=PTL2JK

CALL PARTLS(SeledsPTLIJK)

GO TN A00

PTLIK=PTL1I

PTL2IK=PTL21J

PTIL2UK=PTL21L)

CALL PARTLS(4¢10.PTLIJK)

G0 1O A00

CALL PARTLS(1.K+0ePTL1K)

CALI PARTLS(3+deKePTL2JK)

PTL2IK=PTL2JK

CALL PARTLS(S eJeKePTLIJK)

PHI(21=PTL 1 JK/AOVFRH-(PTLLI*PTL2UK+PTLL1J*PTL2IK
1 +PTUIK*PTL21J)/AOVERH*¥2+
2 2.0%PTLLIT*PTL 1 J*PTLLIK/ACVERH®%3
RFTURN

END

561)
562)
563)
564)
565)
566)
567)
568}
565}
570)
571)
572)
5731}
574}
575)
5761
517)
578)

5T9)
580)
581}
582)
583)
584)
5851
586)
587}
588)
589)
590)
591)
592)
593)
594)
595)
596}
597}
598}
599)
600)
601)
602)
603)
604)
605)
606)
607)
608)
609)
610)
611)
612)
613)
614)
615)
616)
617)
618)
619}
620)
621)
622)
623)
624)
625)
626)
627)
628)
629)
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APPENDIX D — Continued

SUBROUT INF PARTLS{IORDERsMsN,DERIV)

COMMON RSUROe AOVERH.CHV{2) ¢SINXH{2),COSXHI 2},
1 SINXV(2)«COSXV{2)»IHVIO0, ICHIHs ICHIV,

? COORD(3)«PH (2) 91 9JsKsAHPRIM

GO Tl (100+,200+300.400,5000600), I0RDER

FIRST ORDFR PARTIALS WITH RESPECT TO COORDINATE

100 6N TO{11Ce1204130) M

110 DFRIV=(COORDC Y Y *CHVIIHVIO) ) /RSUBO-SINXHIICHIH) %
1 SINXVIICHIV)
GO TO 700

120 DFRIV={CODRD(2)*CHV(IHVI0) ) /RSUBO+AHPRIM*
1 SINXVIICHIV)*COSXHUICHIH)

GO TO 700
130 NDFRIV={COORD{(3)I*CHV( IHVI0) )/RSUBO+SINXHIICHIH) %

1 COSXVUICHIV)
60 TO 700

SFCOND ORDER PARTTAL WITH RESPECT TO COORDINATE

200 DFRIV=({CHV({IHV90)/RSUBO)}* (1.0—~{COORC(M)}*%2)/
1 (RSUBO*%2) )
GO T 700

SFCOND OQRDFR PARTIAL WITH RESPECT TO COORDINATES M AND N

300 DFRIV=-COORDI{MI*COORD(NI*CHVIIRVSIO0) /RSUBO%**3
GO TN 700

THIRD ORDER PARTIAL WITH RESPECT TC COCRDINATE M

400 DFRIV=(3.0*%COORNDIMI*CHV{IHVIO) /RSUBO*%3} %
1 {COORDIM) %2 /RSUBO**2-1.0)
GO 7O 7¢O

THIRD NRNDER PARTIAL WITH RESPECT 7O COORDINATES M AND N

500 DFRIV=(COORDINY*CHVUIHVI0)/RSUBO**3)*(3,0%
1 COORD(M) ¥%2/RSUBO*¥*2-1.0)
GO T 700

THIRD NRNER PARTTAL WITH RESPECT TO THREE VARIABLES

600 NERTV=3.0%CONDRD{1)#CO0ORD( 2)*COCRD(3}*CHVIIHVI0)/
1 RSUBO**5

700 RETURN
FND

630)
631)
€32)
633)
634)
635)
636)
637)
638}
639)
640)
641}
642)
643)
644)
645)
646)
647)
648)
649)
650}
651)
652)
653)
654)
655}
656}
657)
658)
659)
660}
661)
662)
663)
664)
665)
666)
667}
668)
669)
670)
671)
672)
673)
674)
675)
676)



APPENDIX D —~ Concluded

THE FOLLOWING DATA CARDS WERE USED TO OBTAIN THE COMPUTED RESULTS PRESENTED
IN TABLES II AnD TII:
COLUMN NUMBER

C00000000111111111122222222223333333333444444444455555555556666666666TTT7TT77778
1234567890123450789C123456789012345678901234567890123456789012345678901234567890

$ANGLES CHIH{L) =60e+CHIV(1)=30.%

CLOSED TUNNEL CASE VELOCITIES AND DERIVATIVES

2 1.000 1 .000 1.000 0.375 C. 250 0.125
2 2.000 Ue75C 2.000 0.750 0.250 0.500
2 1.000 1.000 1.00¢C 0. 000 0.000 0. 000
3

$ANGLES CHIH(1)=30.,CHIV(1)=60.%
CLOSED TUNNEL CASE VELOCITIES AND DERIVATIVES
2 1.000 l1.Co00 1.000 0.375 0.125 0.250
2 0.800 l1.500 C.50C 0. 375 C.250 0.125
2 1. 000 i.000 1.000 0.000 0.000 0.000
3

$ANGLES CHIF(L)=45.,CHIV{1)=45.%
CLOSED TUNNEL CASE VELOCITIES AND DERIVATIVES

2 1.000 1.000 1.00C 0. 000 0.000 0. 000
3

$ANGLES CHIH(LI=6C.,CHIV(1)=30.%$

GROUND EFFECT CASE VELOCITIES AND DERIVATIVES

2 2.000 V. 75C 2.000 0.750 0.250 0.500

MORE TYPICALLY, WHEN MULTIPLE SKEW ANGLES ARE REQUIRED, THE FIRST CARD OF
EACH GROUP MIGAT ASSUME A FORM SIMILAR TO THE FOLLOWING CARD:

$ANGLES CHIH(L) =5001€0e9y 70498049909 CHIV(1)1=45.4604y75.490.%

THE SECONU CARD CF EACH GROUP MIGHT ASSUNME ANY OF THE FOUR FOLLOWING FORMS:

CLOSED TUNNEL CASE VELOCITIES ONLY

CLOSED TUNNEL C(ASE VELOCITIES AND LONGITUDINAL DERIVATIVES ONLY
CLOSED TUNNEL CASE VELOCITIES AND DERIVATIVES

GROUND EFFECT CASE VELOCITIES AND DERIVATIVES

COLUMN NUMBER

CCO000000111111411122222222223333333333444444444455555555556666666666TTTTT717778
12345678901234»0789C123456789012345678901234567890123456789012345678901234567870
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APPENDIX E

FLOW CHART FOR FORTRAN PROGRAM OF APPENDIX D

Program STABIL

Function: Main Program

o | INITIALIZE REMAINING Yes AE‘.AD RUNTYP, FACTYP, IXTRA,
ZETA, ETA, GAMMA,

XOVERH, YOVERH, ZOVERH

INITIALIZE CHV{2), SINXu(2),
cosxa(2), SINKV(2), COSKV (e
(2), (2), h READ ANGLES END OF

I, 1q, TR, FI, IFIRST FILE INDICATORS, DELTA, DELTAD

STOP
READ IXTRA, ZETA, ETA, GAMMA,

XOVERH, YOVERH, ZOVERH

IL_,

o
E
CAV(1)=1 IH90=2 - .
SINKH(1)=1 CHIH=00 HI%RLE.‘? TCHAL INT ‘TART DO-LOO COUNT NUMBER OF — NO RUNTYP IS TFIRST=1
COSXH(1)=0 TYPE=2, PAGE HEADING OH_CHIH CHIH AND CHIV = GROUND EFFEC
TANKH=1010 S
2
INSERT VMID IN CHIV'S
ICH=2 ITYPE=2 ia.
SET STANDARD VALUES

SET EQUIVALENT FIRST
QUADRANT CASE

TNCREMENT WUMBER OF CEIV
FOR 2ETA, ETA, GAMMA

@
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Program STABIL - Concluded.

TART DO-LOOP
ON CHIV

IV90=1

CALCULATE SINXV(1),
cosxv(1), cav(1)

IBOTH=1

IcV=2
SET EQUIVALENT FIRST
QUADRANT CASE

TV90=2 IBOTH=2
SINKV(1)=1 COSXV(1)=0
TANXV=1010  CHV(1)=1

CONVERT CASE TO
ECOND QUADRANT

END DO-LOOP

CALCULATE XSET1, START COORDINATE LOOPS
. XSET2, XSET3 oN I, J, K

CONVERT ANSWERS
AND CASE TO
SECOND QUADRANT

CONVERT ANSWERS TO
SECOND QUADRANT

ON CHIH

PRINT ANSWERS

\/

END COORDINATE m@-

[
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Subroutine GRNEFF

Function: Calculate interference factors in ground effect

CAICULATE COORDINATES WO | aarn CALL PHTIJK Wl aarz
THV90=2 ICHIV=2 AHPRIM=1 PHIIJ T (M)=PHI(M) PHIIJ
: IHVO0=1 ICHIV=1
> x ‘
¢ . S .
|
CALL PHIIJK
CALL PHIIJK | oenn [0 TE%;‘I(‘MX;E;I{?({M) carn | MO CHEL TERML(M) =TERML (M)~ PHI(M)
TERM3({M) =TERM3(M) -PHI (M) PHIIJ ) | zeBTV=1 THV90-1 PHIIJ e B AHPRIM=-1. IV90=2 ICHIV=2
'y CALCULATE COORDINATES
« 3
- 2 _ 8
\
AHPRIM=-1. ICHIV=1 JHVQO=1 NO | cart ’ CALL PHTIJK CALCULATE ANSER(M) NO
i K.NE. 1 - [ wROM TERM1, TERM2 K.NE.1 -
CAILCULATE COORDINATES PHILIJ TERM2(M)=PHI(M) TERMi, ’ V
3
a 0
b g

=ANSER(2) =ANSER(1)

penurjuo) — J XIANIAAV
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Subroutine WALEFF

Function: Calculate interference factors in a closed wind-tunnel

—
S R EA N
COORD( 1) =XSETL IMAGE POSTTION (i) COORD(2), COORD(3) FRILS ONLY No | PHITIX =TERM( 1, TDV)+PHI(IDV)
NO 3 ‘é
3 TTERM=ITERM+1 TTERM=11 &
o
= 3
1HV90=2 ¥ES , CALCULATE ¥ CALCULATE YSETL, YSET2,
ITERM= 3
ICHIV-IXVSET ICHIH=TXHSET TEOTH. NE. 2 CrEme KORD(2,1) TO KORD(12, 5) ICASE=. YSET3, ZSETL, ZSET2, «-QTMTWD;;OOW CONTINUE )
CALCULATE COORDINATES IXHSET=1 TXVSET-2 ZSET3 ITERM=1 MAGE ION (M,
9
CALCULATE 51
KORD(2,1) 70 KORD(12, 3)
IXESET=2 DXVSET=1 m
8 4
TERM{ ITERM, IDV) =
CNE.L NO | caLL VELOC NO [ cary, TERM( TTERM, IDV ) =TERM( TTERM, IDV)+PHI(IDV) KoNE. L NO 4 oty VELOC NO TcarL TERM{ ITERM, IDV) - PHI(IDV)
R PHIIJ ONLY PHITJK THV90=1 ICHIH=1 ICHIV=1 e PHILJ ONLY PHIIJK ITERM=ITERM+1
IHV90=2 ICHIR=P ICHIV=2
o}
g 4
¥ES )
L THGO=2 ICASE=2
-
8 2 g
i ™
=%§m¥§m§w§ PIS??.I;K VELOC ;{AILILJ o s CALCULATE V90=2
BT { D7) To N ONLY COORDINATES | no
2}
g - g

panunjuo)y ~ J XIANHAdV



96

Subroutine WALEFF. - Concluded.

PHIIJK

=TERM( ITERM, 1DV )- PEI( IDV)

TERM( ITERM, IDV)

END DO-LOOP ON
IMAGE POSITION

CALCULATE IPOWRL, IPOWR2

CALCULATE IPOWR1, IPW'R?I—.

CALCULATE
ANSER(IDV)

YES

TERM( ITERM, IDV)
=TERM(ITERM, IDV)+PHI(IDV)

TEV90=1 ICHIV=1
TCHIH=1
CALCULATE
COORDINATES

NO
—[DELTA( 1,J)= ANSER(1 )h

-[DELTAD(I,J,K):ANSER(E) I——QRETURN)

l

penurjuo) - I XIANIdAAV



APPENDIX E — Continued

'Subroutine PHIIJ

Function: Calculate interference velocities in free air

. CALCULATE RSUBO, AOVERH
CALL PARTLS(1,I,0, PTL1I)

" WO TES
* PTL1J=PTL1I
\CALL PARTLS(1,J,0,PTL1J)
,CALL pARTLs(5; 11 J, PTL21J) lcALL PAR’_I‘I.S(Z,I,O, PTL2IJ)

t . L
t

. CALCULATE PHI(1)

97
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Subroutine PHI1JK

Function: Calculate interference gradients in free air

NO
g CAICULATE
ENTRY k=1 RSUBO, AOVERH
)
é 1
CALL PARTLS(1,1I,0, PTLiI)
1ES PTLLJ=PTL1I
CALL PARTLS(2,T, 0, PTL2IJ)
je)
=1
YES NO
J= I=K CALL PARTLS(1,J,0, PTLLJ) 1ES
Q 0
=
: 8 f - 2
PTL1K=PTL1J PILIK=PTL1I
s momslone e | | | o pemolnomem | |G SEEC PO TR, g,
CALL Pgl;TIS(B,I,K, PTL21IK) CALL PARTLS(3,J, K, PTL2JK) PIIATK=PTI2IK PII2JK=PTL2IT
LOTJ=PTL2IK 1y PTL2IJ=PTL2JK - RIS (]
CALL PARTLS(5,I,J, PTLIJK) | | | cALL PARTLS(S5,I,J, PILIJK) CALL PARTLS(S, J, K, PILLIK) CALL PARTLS(Y, 1,0, PILLIK)

‘CALL PARTLS(1,K, 0, PTLIK)

| CALL PARTLS(3,I,K,PTL2IK)

CALL PARTLIS(3,J,X, PTL2JK)

CALL PARTLS(3,I,dJ,PrL21J)
CALL PARTIS(6,0,0, PTLIJK)

!

el = SENEY

-

CAICULATE PHI(2)

RETURN

penunjuo) — H XIANAJAV



GO TO,

1 IORDER

To obtain the partial derivatives of PHT

Subroutine PARTLS(IORDER,M,N,DERIV)

Function:

APPENDIX E — Concluded

891BUTPIOCOD ¢ 09 720o3dsax
U3TA sTeTiaed JI9PIO PITYL

P P
O=HEOT

CAICULATE

DERIVATIVE

N PuB | S948BUTPIOCOD 03 3oadsaa & W
U3TA sTeTqred I9DIO PITYL &g
. i ] 38 Lo
G=aA@IOT M m
oA
W s3BUTPIOOD 03 jo9dssx
Y3 TM sTBT3IBd I9PIO PITYL
P T =
L H=4aqI0L
ﬂ N PuUB W S994BUTPIOOD 0% 3oadsax m
YITA STBTIBI ISPIO PUODSG ) m
et
¢=d"aIoT w &
34
W @aeurpiooo o3 qoadsaa
yaTA sTeIzIed I9PIO pucdag
e

Z=ga@IOT

CAICULATE

DERIVATIVE

RETURN

CAICULATE

DERIVATIVE

.
=3

CALCULATE
DERIVATIVE

M

N 298UTPIOOD
01 1qo3dsax U3TM

g1eTaIBd I9PIO 3SITH

T=94q90T

[
=

CALCULATE

DERIVATIVE

CAICULATE
DERIVATIVE
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TABLE I

VALUES OF l%’ %, AND THEIR DERIVATIVES FOR THE CENTER OF LIFT IN GROUND EFFECT

sy=sinyy, Sy=sin Xy» Cg=COSXy, Cy=CoSXy, CHV = ’1 - cossz cos2 Xy

l:For conciseness, the following abbreviations are used in this table and in appendix Cil

102

Values for use in determining —
Function of
A A tan Xy tan y -tan y, -tan
2 or — &|- " _ prtaalt 'S ' . o v o ' . v
B O % [tan W G | ‘I"xv=90° g 1| # [o.0.-2] #|tan g, g 1 ) IXV=90° a0ty Gt
f Cyy? o} + 5 28,2 [o2
A o A SHV ZHY TPV Sy HV * SV
or 4 2 SHeY SHCy 2(CHV - sI‘ICV) SHOY SHOV
8. s
H H
-2s -=—(C: - -2 -=—(C 5
HSV Ty CHV + V) SHSY Susy CHV( 0V * 5V)
oy °H
2syc =—IC +8 -8yC -2syc: -=——IC +s
veH CHV( HY + 5V) VeH VeH Cx-rv( 1Y + 5v)
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CHE{HY =  60.00
tXexh
DFITAL=-.-) -1.13857
NDEl TAL X1 -.3771
NEITAL=4=aY) -A591
DFLTAI-o=u7) 1.4427
CHItH) = A0L00
tx.x1
NEITAL-o-) —.1h467
DRI TA(-.-oX} -.1R51
nFLTAL Y1 «0712
NFEILTaf W70 - 2165

TABLE 11

NUMERICAL DEMONSTRATION OF SYMMETRY OF INTERFERENCE FACTORS

@) In wind tunnel

INTERFERENCE FACTORS FOR STARILITY WORK [N A CLOSED TUNNEL

AT A PNINT NEAR A VANISHINGLY SMALL MCDEL

GAMMA = 2.CCO 7FTA = ?2.000

ETA =
X/H = +150 Y/H = .250 I/H =
CHItV) = 30.C0

tXeY} (XeZ} (Y.x) (YsY) (Ye2)
-.8978 -.1094 -.5994 ~.6524 2.€500
-R491 1.4427 1.1989 -84l « 4786
1.1433 5122 +B414 3.0425 -1.7695
5122 -.76867 6784 -1.7695 —4.2416

(b

In ground effect

INTERFERENCF FACTORS FOR STABILITY WUORK IN GRCUND &

AT A POINT NFAR A VANISHINGLY SMALL MODFL

X/H =" .750

Y/H = 250 I/H =

CHI(v) = 30.00
{Xs ¥} (X47) (Y. %) YY) (Y2}
-.2271 -.1595 -e2271 -.0732 4127
L0712 22345 +C712 .1183 .« 2463
<1183 «2463 .1183 <4851 -.0771
« 2463 0667 22463 -.0771 -+5563

<750

»500

FFECT

500

(7ex)
~+4285
-.7179

«5457
1.1923

(747)
—.7258
«5457
-.6569
1.5429

t2.Y)
~.1898
0167
=.1502
23173

(7423
-1.2166
1.1923
1.5429
1.3747

(z.2)
—.3665
0662
<3173
.6039
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TABLE [11

NUMERICAL DEMONSTRATION OF [NTERCHANGE EQUIVALENCES FOR A VANISHINGLY SMALL MODEL

TNTERFERENCE FACTORS FOR STABIVETY WORK IN A CLOSED TUNNEL

(a) Arbitrary point in arbitrary tunnet -

AT A POINT NEAR A VAN[SHINGLY SMALL MCDEL

GAMMA = 2,000

X/H = «75¢C

CHI(H) = 60.00 CHI(V) = 30,00

(XeX) (XeY) (Xy2)

DFLTAC(= o~} -1.3957 ~.R8978 -.109%4
-e3771 «8491 1.4427

-R49] 1.1433 «5122

1.4627 <5122 -.7662

IFTA

Y/H

(YeX)
-=5998
1.1989

28414

<4786

?.000

«250

ty.v)
—«6524
.8414
3.0425
-1.7695

ETA = .750

Z/H = .500

ty,2)
2.0500
.4786
-1.7695
-4.2414

INTERFERENCE FACTORS FOR STABILITY WORK IN A CLCSED TUNNEL

GANMA

CHI{HY = 30.00 CHItV)

IX.Y)
-+1094
?.R855
~1.5325
1.0244%

AT A POINT NEAR A VANISHINGLY SMALL MCDEL

+500

<375

60.00

1X.2)
~.8678
1.6981
1.0244
2.2866

7FTA

Y/H

{y,x)
—e4285
-1.4358
2.3847
1.0915

« 800

250

(YY)
~1.2166
2.3847
2.7495
3.0858

ETA = 1,500

I/ = 125

ty,2)
—.7258
1.0915
3.0858
~1.3137

{b) Arbitrary point with centrally located model in square tunnel

INTERFERENCE FACTORS FOR STABILITY WORK IN A CLOSED TUNNEL

GAMMA =

X/H =

CHItH) = 130,00 CHI{V) =
(XeX) {XeY)
DEILTAE=,-) =+ 56061 —.4826
DEL YA (- -.A9R8 «0958
-0958 +4388
-.1753 -7309

AT A POINT NFAR A VANISHINGLY SMALL MCDEL

1.000

+375

60,00

IFTA = 1.000

Y/H

125

EYa = 1.000

/8 = ,25)

INTERFERENCE FACTORS FOR STABILITY WORK IN A CLOSED TUNNFL

GAMMA
X/H
CHILHE = 40.00 CHIV)
(Xex) Xe¥)
DE) TA(~,-} --6061 -«5022
~«A9RA -e1753
- 1753 «4599
-0658 -7309

104

=

AT A POINT NEAR A VANISHINGLY SMALL MGDEL

1.C00

<375

30.00
{Xe7)
.06%8

7309
«4388

IFTA = 1.000

Y/H

(Y.x)
-.0791
1357
«0363
- 3045

«250

(Y,Y)
-.6279
.0363
«6392
3787

ETA = 1.000

I/H = ,125

ty. 21
s 2614
« 3045
«3787
~« 7749

(2.%)
—.%285
~.7179

«5457
1.1923

(2.3
~.5998
2.3978

<9571
1.682R

(ZeX}
-.0791
+1357
«3045
.0363%

(22
.1588
—e4212
~e1564
-.1837

(Z7.Y1)
=.7258
5457
=e6569
1.5429

(Z.¥)
2.0500
-9571
-8.4828
-3.5389

(Z.Y}
22414
3065
-.7749
3787

(Zs¥)
-«3555
—+ 1564
~«2584

« 7169

(Ze2y
-1.2166
1.1923
1.5429
1.3747

1Z,2)
~.6524
1.6828
-3.5389
6.0849

(Z.2)
-.6279
+0363
3787
«6392

tz.)
-.7637
-.1837
« 7169
«6796



TABLE 111, - CONCLUDED.

(c) At centrally located model in square tunnel

TNTERFERENCE FACTNRS FOR STABILITY WNORK IN A CLCSED TUNNEL

AT A PDINY NEAR A VANISHINGLY SMALL MCDEL

GAMMA = 1.000 IETA = 1.000 ETA = 1.000
X/H = 0.000 Y/H = 0.000 /4 = g,000
CHI(H) = 60.00 CHItV}) = 30.00
(XeX) (Xo¥) {XeZ) (YeXh 1Y,¥) 1¥»2) (Z.x)
DFITAl=o=} -.099% ~.5752 ~7184% -. 0461 -.7899 » 0299 +4210
X1 -1.0978 -.4978 -.5092 -.2334% —+5315 3050 ~e1301
¥h -<4978 -2308 -8732 -.5315 «6034 «8249 -«3184
NELTA(=-o=e?) -+ 5092 «AT32 -B&T0 «3050 ~ 82493 ~«3700 -.9078
INTERFERENCE FACTORS FOR STARILITY WORK IN A CLCSED TUNNEL
AT A POTNT NEAR A VANISHEINGLY SMALL MCDEL
GAMMA = 1.000 ZETA = 1.000 £TA = 1.000
X/H = 0.000 Y/H = 0.000 Z/H = 0.000
CHE(H} = 30.00 CHItV) = 60,00
(XeXV (Xe¥) {XeZ) (Yex) (Y.} 1Y,2) (24X}
DFI TA({-.-} =+ 0995 -.7184 -.5752 <4210 -.B8231 -.2350 =a0461
=1.0978 -.5092 -.4978 -.1301 =.9078 -.3184 ~+2334
=«5092 «8670 -8732 -.9078 +7133 «5570 «3050
—«4978 -8732 -2308 -<3184 +5570 -.5837 -.5315

(L.Y)
-.2350
-+3184
-.5837

«55T70

(d) At centrally located model in square tunnel with equal vertical and horizontal skew angles

INTERFERENCE FACTORS FOR STABILITY WORK IN A CLOSED TUNNFL

GAMMA

=

AT A POINT NEAR A VANISHINGLY SMALL MCOEL

1.000 ZETA = 1.000 ETA = 1.000
X/H = 0.000 ¥Y/H = 0.000 I/H = 0.000
CHItH) = 45.00 CHI(V) = 45.00

tXex) (XeY) {Xe7) {Y.X) YoV tY,2) (ZeX}
~« 1369 ~5555 =+5555 «2784 ~.5826 -.20t6 2286
~« 38467 =3277 -.32717 -.0740 -«4351 -.2219 --0240
-« 3277 24924 <1522 - 44351 «2152 - 5286 -.2219
=+ 3277 -7522 «4974 -a2219 <5286 ~e1912 —«4351

(Z,Y)
-.2016
-.2219
-.1912

-5786

17,71
~.7899
~.5315

«B249

«6034

(Z.2)
~.5826
~.4351

«5286

.2152
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TABLE IV

NUMERICAL DEMONSTRATION OF FAILURE OF INTERCHANGE EQUIVALENCES FOR A WING OF FINITE SPAN

(a) Arbitrary wake skew angles

INTERFERENCE FACTORS FOR STABILITY TESTS IN A CLOSED TUNNEL
AVERAGE [NTERFERENCE OVER A SWEPT WING OF FINITE SPAN
UNIFORM LDADING
ETA= 1.030 ZETA= 1.030 GAMMA= 1.32?
S1GMA= .75) ALPHA=  3.000 LAaMBDA= 0.00C

BETAa= 2.202

CHIIR) = 60.00 CHIIV) = 30.00
{XoX} tXeY) (X¢2} (Y, X1 LY, Y) ysZ} 12, x} (Z,v)
DELTA{= =) -.1799 -.4081 -.7790 (819 -.7885 =+1506 »3100 -.0566
-1.23530 ~e2477 =. 4959 ~e7341 -.1537
—a2477 3876 «6169 0752 1.0358
DELTA{~ = 42) = +4959 «6169 8724 ~e1537 1.2358 20715

INTERFERENCE FACTORS FOR STABILITY TESYS IN A CLOSED TUNNEL
AVERAGF INTERFERENCE DVER A& SWEPT WING OF FENITE SPAV

{UNIFQRM  LDADING

FTa= 1.9 ZETA= 1.000 GAMMA= 1.000
SIGMa= 757 ALPHA= 0,701 LAMBDA= 3.00C
RETA= .00
CHItH) = 3u.iu Critv) = 61,07
{ X, %0 LY {Xe2) {Y,x) {Y,Y) {y,21 z,x) {Z,Y}
DELTAL ) -s"321 ~.04l9 -eRN24 «6348 ~l.0274 -e3644 -.2292 1852
DELTA{=y=yX) ~1.611% “e9757 =1.1591 «1671 -1.8871 =+9156 ~.8274 1.0977
DELTA(=s=4Y) —-,9757 l.49306 1.5590 -1.8971 29415 1.1250 1.0977 -+8390
DELTAl-+=s 1) -1.,1591 le55% 1182 -.9156 1.1250 -1.0086 -« 7607 1.0499
(b) Equal wake skew angles
INTERFFRENCE FACTURS FOR STABILITY TESTS IN A CLOSED TUNNEL
AVERAGE INTFRFERENCE OVFR A SWEPT WING OF FINITE SPAN
UNIFORM LOADING
ETA= 1.000 LETA= 1.07¢ GAMMA= 1.Co0
SIGMA= 7560 ALPHA= (C.000 LAMBDA= 0.NC0C
BETA= C.T90
CHI(H)} = 45.%) CHItV) = 65,7¢

{X,yX) (X, Y1) (X.2) (Yo X1 (Y,Y) 1Yy 2) {Z,X) (Zs¥)
DELTA(= -1 -.1687 -.5373 —-.7278 3088 -.T173 -.3057 +1394 —.0192
DFLTAL= 4=, X} -1.4261 -.3761 -.57"2 -.C628 -.8662 -.5662 ~.06490 2382
NELTA(=y—y Y] -.3061 «7082 9598 ~. 8662 1448 +3284 2382 ~. 6664
NELTAL=-,-, 1) ~.87"2 .9593 +6981 -.5662 + 9284 -.9819 —.4162 «3368

1.6664

{Z,2)
-.6728
—.4162

.3368

« 7154



Figure 1.- Relationship of forces, induced velocities, and wake skew angles.
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Figure 2.- Wake in free air.
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Figure 4.- Wake and image near simple ground plane.



Figure 5.- Wake and images near intersection of simple ground plane and wall.
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Figure 7.- Wake and image with single sidewall.

113



/]
Z A
~—2B-b I 2B-b —
7
/] :
] - j N - - —
% ¢ 1
“e g A7
N '
i 2 h
/] |
1\,
/ <
&7 A G, h
| \\‘\V é é\
2 #
' Z
7,

Figure 8.- Wake and images near intersection of single sidewall and ground plane,

114



4

Y
z Py .
I T p |t T
e—— p —>
d 2B - - B

. L(xy,2) \
2H

2H —t

(a) Initial wind tunnel. (b) Rotate 900 counterclockwise.
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{c) Reverse to mirror image. {(d} Revert to standard nomenclature.

Figure 9.- Steps in developing interchange equivalences.
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(e) Xy in first quadrant.
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(g) Xy in first quadrant.

(x,~y,z) ~—>b

- = Y,
T
h

~< 28 -

(f) XH in second quadrant,
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2H |
I Y N S
' Xy *(xY,-2); h
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(h) Xy in second quadrant,

Figure 9.- Concluded.
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Figure 10.- Vector diagram for correcting yaw angle while retaining a rate of sink.
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Figure 11.- Vector diagram for correcting both yaw angle and angle of attack.
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Figure 13.- Interference factors as a function of x,, for a vanishingly small medel in ground effect and centered in a closed
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Figure 13.- Concluded.
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Figure 20.- Distribution of interference factors along the longitudinal axis of the tunnel for a vanishingly smail model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. xH = 900, Xy = 600,
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Figure 21.- Distribution of interference factors along the longitudinal axis of the tunnel for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 900, Xy = 300,
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Figure 22,- Distribution of interference factors along the longitudinal axis of the tunnel for a vanishingly smail model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. XH = 600, Xy = 900,
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Figure 23.- Distribution of interference factors along the longitudinal axis of the tunnel for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 600, Xy = 600,
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Figure 24.- Distribution of interference factors along the longitudinal axis of the tunnel for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 600; XV = 300,
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in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 909, Xy = 900,
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Figure 26.- Distribution of interference factors along the lateral axis of the tunne! for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 900, Xy = 60°,
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Figure 27.- Distribution of interference factors along the lateral axis of the tunnel for a vanishingly small model centered

in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 909, Xy = 300,
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Figure 28.- Distribution of interference factors along the lateral axis of the tunnel for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 600, Xy = 90°,
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Figure 29.- Distribution of interference factors along the lateral axis of the tunnel for a vanishingly small model centered
in a closed rectanguiar tunnel having a width-height ratio of 1.5, xy = 609; Xy = 609,
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Figure 30.- Distribution of interference factors over the lateral axis of the tunnel for a vanishingly smail model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 600; Xy = 300,
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Figure 31.- Distribution of interference factors over the vertical axis of the tunnel for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 909, XV =900,
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Figure 32.- Distribution of interference factors over the vertical axis of the tunnel for a vanishingly small mode! centered
in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 900, Xy = 600,

208



1.0

.\\ /
> |
|
By,y
IR
Z)4 O

1
/
/
-5 7
A
,/ / Caiculated |
/
7 /— From gradient
/// / - == DiTEC“y i
10 /
-2

-1 0
3

(b) Caused by forces in the Y-direction.

Figure 32.- Continued.

209



1.0
N \
\
\\ \\
\ \\\ Calculated |
i \\ From gradient
\ \\ ______ Directly |
5 '\ \
\ \‘-
\ \
|| \
| \\
ZH o‘ \\
\
| |
dz,2 : \
] | 3z,y 8?"“
- / \
N\
ll \ \\~
,/' \ \\‘
/I \\\
- qu 0 ! °
d

(c) Caused by forces in the Z-~direction.

Figure 32.- Concluded.

210




112

10 \\ . ; //
\ 7
NER
NIV 4
84
- / /\/ Calculated
. />\/ \ From gradient
7NV | | mmemm———— Directly
/// \\\\
/ N
/ \
, /
/H / \\
5 /// sx\{’f\
Oxz Sxy \ L
///
v ~
7 \\
'.5 //’ // \ = ~a
pd / i 2
// \ To1=d
-10
- -2 - 0

|
5

(a) Caused by forces in the X-direction.

Figure 33.- Distribution of interference factors over the vertical axis of the tunnel for a vanishingly small model centered

in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 909; Xy =30°
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Figure 33.- Continued.
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Figure 34.- Distribution of interference factors over the vertical axis of the tunnel for a vanishingly smail model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 600; Xy = 90°,
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Figure 35.- Distribution of interference factors over the vertical axis of the tunnel for a vanishingly small model centered
in a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 60

0, Xy = 60°.
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Figure 36.- Distribution of interference factors over the vertical axis of the tunnel for a vanishingly small model centered

in a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 60°; Xy = 30°,
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(a) Caused by forces in the X-direction.

Figure 41.- Distribution of interference factors over the longitudinal axis of the tunnel for a uniformly loaded unswept wing centrally
located and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5, xy = 90%; xy = 909,
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Figure 42.- Distribution of interference factors over the longitudinal axis of the tunnel for a uniformly loaded unswept wing centrally
located and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 900, Xy = 600,
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Figure 43.- Distribution of interference factors over the longitudinal axis of the tunnel for a uniformly loaded unswept wing centrally
located and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 909, Xy = 300,
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Figure 44.- Distribution of interference factors over the longitudinal axis of the tunnel for a uniformly loaded unswept wing centrally
located and spanning half the width of a closed rectangular tunnel having a width~height ratio of 1.5. XH = 60°; Xy = 9°,
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Figure 45.- Distribution of interference factors over the longitudinal axis of the tunnel for a uniformly loaded unswept wing centrally
located and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 60°; Xy = 60,
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Figure 46.- Distribution of interference factors over the longitudinal axis of the tunnel for a uniformly loaded unswept wing centrally
located and spanning half the width of a closed rectanguiar tunnel having a width-height ratio of 1.5. Xy = 600, Xy = 300,
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Figure 47.- Spanwise distribution of interference factors for a uniformly loaded unswept wing centrally focated and spanning
half the width of a closed rectangular tunnel having a width-height ratio of 15. Xy = 90% xy = 90°.
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Figure 48.- Spanwise distribution of interference factors for a uniformly loaded unswept wing centrally located and spanning
half the width of a closed rectangular tunnel having a width-height ratio of 1.5. XH = 900, Xy = 600,
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Figure 49.- Spanwise distribution of interference factors for a uniformly loaded unswept wing centrally located and spanning
half the width of a closed rectangular tunnel having a width-height ratio of 1.5, xy = 900; xy = 300,
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Figure 50.- Spanwise distribution of interference factors for a uniformly loaded unswept wing centrally located and spanning
half the width of a closed rectangular tunnel having a width-height ratio of 1.5. XH = 600, Xy = 90°,
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Figure 51.- Spanwise distribution of interference factors for a uniformly loaded unswept wing centrally located and spanning
half the width of a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 60°; Xy = 600,
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Figure 52.- Spanwise distribution of interference factors for a uniformly loaded unswept wing centrally located and spanning
half the width of a closed rectangular tunnel having a width-height ratio of L5. xy = 60°; xy = 30°.
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Figure 53.- Distribution of interference factors over the vertical axis of the tunnel for a uniformly loaded unswept wing centrally located
and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5. XH = 90°%: xy = 90°
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Figure 54.- Distribution of interference factors over the vertical axis of the tunnel for a uniformiy loaded unswept wing centrally located
and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5. xp = 90°; xy = 60O,
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Figure 55.- Distribution of interference factors over the vertical axis of the tunnel for a uniformly loaded unswept wing centrally located
ratio of 15, xy = 90%; xy = 30°

and spanning half the width of a closed rectangular tunnel having a width-height
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(a} Caused by forces in the X-direction.

Figure 56.- Distribution of interference factors over the vertical axis of the tunnel for a uniformly loaded unswept wing centraily located
and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5. Xy = 60°; xy = 90°,
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{a) Caused by forces in the X-direction.

Figure 57.- Distribution of interference factors over the vertical axis of the tunnel for a uniformly loaded unswept wing centrally located
and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5. xy = 60°; Xy = 60,
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Figure 57.- Continued.
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Figure 58.- Distribution of interference factors over the vertical axis of the tunnel for a uniformly loaded unswept wing centrally located
and spanning half the width of a closed rectangular tunnel having a width-height ratio of 1.5, Xy = 600; Xy = 300
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Figure 58.- Continued.
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Figure 59.- Effect of sweep and yaw on the distribution of interference factors over the span of wings in a tunnel having a width-height ratio of 1.5.
0=05; xy = 900; xy =90°. (Note that for these skew angles &y z = By,z =bz,x =87,y = 0.) Apex of lifting line is fixed at center of the tunnel.

1.2



€I¢

Sx,y

I l T 1 T T 1 1 1
A,deg y,deg
0 0
S o 45
45 0 |
- 45 45 —
0- 4 ===
== _ et r o s
-
-1
-12 -8 -4 0 .8

Spanwise station

(b) By,y.

Figure 59.- Continued,

1.2



1283

T 7 T T 1 1 T
A,deg  y,deg
0
_———— 0
45
— — 45
i e -1 - -
\Q::::r__ - —
0 4 8

Sponwise station

(c) Gyix.

Figure 59.- Continued.




G1€

——— — W So— ——t— —

-\,_\\ o
————— = — P R -:\::
L e f—1 i e r— = i — e —— -
1 ~\\
—~ -y
A,deg  V,deg -

-1.2

-4 0

Spanwise station

@ byy.

Figure 59.- Continued,



91¢

822

A deg

0
0
45

45

y ,deg
0
45
0
45

A
I

!
1

-

0

Spanwise station

(&) 7.

Figure 59.- Concluded.




l

LIE

| T T T T | T T T
A,deg  V,deg
0 0
T I I O O O O O O O O O I I s — 0 45
il 45 0
— 45 45
o) !
—T - ) |
L~
2 -8 -4 0 4 8

Spanwise station
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Figure 61.- Effect of sweep and yaw on the distribution of interference factors over the span of wings in a tunnel having a width-height ratio of 1.5.
0=05; xy=60; xy = 60% Apex of litting line is fixed at center of tunnel,
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Figure 62.- Effect of sweep and yaw on the interference factor gradients related to the longitudinal distribution of vertical interference velocity.
Distribution over the span of wings in a wind tunnel having a width-height ratio of 15. ¢ = 0.5, Xy = 600 xy = 60°, Apex of lifting line
is fixed at center of tunnel.
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